9 research outputs found

    The C-Terminal Domain of the MutL Homolog from Neisseria gonorrhoeae Forms an Inverted Homodimer

    Get PDF
    The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage

    Investigation of structure and antigenic capacities of Thermococcales cell envelopes and reclassification of ``Caldococcus litoralis'' Z-1301 as Thermococcus litoralis Z-1301

    No full text
    Fourteen strains of hyperthermophilic organotrophic anaerobic marine Archaea were isolated from shallow water and deep-sea hot vents, and four of them were characterized. These isolates, eight previously published strains, and six type strains of species of the order Thermococcales were selected for the study of cell wall components by means of thin sectioning or freeze-etching electron microscopy. The cell envelopes of most isolates were shown to consist of regularly arrayed surface protein layers, either single or double, with hexagonal lattice (p6) symmetry, as the exclusive constituents outside the cytoplasmic membrane. The S-layers studied differed in center-to-center spacing and molecular mass of the constituent protein subunits. Polyclonal antisera raised against the cells of 10 species were found to be species-specific and allowed 12 new isolates from shallow water hot vents to be identified as representatives of the species Thermococcus litoralis. Thermococcus stetteri, Thermococcus chitonophagus, and Thermococcus pacificus. Of the 7 deep-sea isolates, only 1 was identified as a T. litoralis strain. Thus, hyperthermophilic marine organotrophic isolates obtained from deep-sea hot vents showed greater diversity with regard to their S-layer proteins than shallow water isolates

    Intrinsic halotolerance of the psychrophilic alpha-amylase from Pseudoalteromonas haloplanktis

    Full text link
    The halotolerance of a cold adapted alpha-amylase from the psychrophilic bacterium Pseudoalteromonas haloplanktis (AHA) was investigated. AHA exhibited hydrolytic activity over a broad range of NaCl concentrations (0.01-4.5 M). AHA showed 28% increased activity in 0.5-2.0 M NaCl compared to that in 0.01 M NaCl. In contrast, the corresponding mesophilic (Bacillus amyloliquefaciens) and thermostable (B. licheniformis) alpha-amylases showed a 39 and 46% decrease in activity respectively. Even at 4.5 M NaCl, 80% of the initial activity was detected for AHA, whereas the mesophilic and thermostable enzymes were inactive. Besides an unaltered fluorescence emission and secondary structure, a 10 degrees C positive shift in the temperature optimum, a stabilization factor of > 5 for thermal inactivation and a Delta T-m of 8.3 degrees C for the secondary structure melting were estimated in 2.7 M NaCl. The higher activation energy, half-life time and T-m indicated reduced conformational dynamics and increased rigidity in the presence of higher NaCl concentrations. A comparison with the sequences of other halophilic alpha-amylases revealed that AHA also contains higher proportion of small hydrophobic residues and acidic residues resulting in a higher negative surface potential. Thus, with some compromise in cold activity, psychrophilic adaptation has also manifested halotolerance to AHA that is comparable to the halophilic enzymes
    corecore