18 research outputs found

    Stellar Masses, Kinematics, and White Dwarf Composition for Three Close DA+dMe Binaries

    Get PDF
    We determine the mass functions and mass ratios for three close white dwarf plus red dwarf binaries (EUVE J0720-317, 1016-053, and 2013+400). Hubble Space Telescope Goddard High-Resolution Spectrograph spectra of the He II λ1640 and C IV λ1550 spectral lines trace the white dwarf orbital motion, and Hamilton Spectrograph echelle spectra (Lick Observatory) and lower dispersion spectra trace the red dwarf orbital motion. The data sets allow us to measure orbital periods and velocities, as well as the white dwarf gravitational redshifts. The red dwarf and white dwarf mass estimates obtained from a combination of independent mass measurements for the white dwarf stars and our new orbital elements help constrain probable evolutionary outcomes. We find that EUVE J0720-317 will probably come into contact within a Hubble time and that the mass transfer will be unstable on a dynamical time. We also conclude that the much lower secondary masses in EUVE J1016-053 and EUVE J2013+400 exclude the possibility of significant interaction in these systems. We also present new helium and carbon photospheric abundance measurements in the three white dwarfs. The white dwarf atmospheric composition may show the effects of accretion of red dwarf mass-loss material onto its surface. Finally, we study the kinematics of the systems, and we also show that the white dwarf in EUVE J1016-053 is part of a quadruple system

    Hubble Space Telescope Imaging Spectrograph Observations of the Hot White Dwarf in the Close Binary Feige 24

    Get PDF
    We obtained and analyzed two Hubble Space Telescope Imaging Spectrograph spectra of the white dwarf in the DA plus dMe binary Feige 24. The spectra, obtained at orbital quadratures, provide new estimates of the white dwarf motion and gravitational redshift resulting in revised white dwarf parameters. An analysis of interstellar absorption lines reveals the presence of two clouds (+3.1 km s-1, +17.6 km s-1) in the line of sight toward Feige 24; one of these clouds (+17.6 km s-1) is identified with the local cloud. A study of the Lyα H I and D I interstellar medium lines shows that the deuterium-to-hydrogen abundance ratio (D/H = 1.3 × 10-5) is consistent with other measurements supporting a relative constancy of this ratio throughout the local interstellar medium. The total hydrogen column density measured with Lyα (log nH = 2.95 × 1018 cm-2) is in agreement with EUV Lyman continuum flux measurements. Finally, we present a complete abundance pattern for the white dwarf, demonstrating the predominance of iron and nickel over lighter elements. Residual ionization imbalance in the case of several elements, most notably in the case of O IV/O V, which cannot be explained by temperature or surface gravity variations, may indicate the presence of other atmospheric constituents, inhomogeneous stratification of oxygen in the photosphere, and/or remaining inaccuracies in the treatment of model atoms. The abundance patterns in Feige 24 and in the hot DA white dwarf G191-B2B are remarkably similar, indicating that the same processes are operating equally in both stars

    The Neon Abundance in the Ejecta of QU Vul From Late-Epoch IR Spectra

    Full text link
    We present ground-based SpectroCam-10 mid-infrared, MMT optical, and Spitzer Space Telescope IRS mid-infrared spectra taken 7.62, 18.75, and 19.38 years respectively after the outburst of the old classical nova QU Vulpeculae (Nova Vul 1984 #2). The spectra of the ejecta are dominated by forbidden line emission from neon and oxygen. Our analysis shows that neon was, at the first and last epochs respectively, more than 76 and 168 times overabundant by number with respect to hydrogen compared to the solar value. These high lower limits to the neon abundance confirm that QU Vul involved a thermonuclear runaway on an ONeMg white dwarf and approach the yields predicted by models of the nucleosynthesis in such events.Comment: ApJ 2007 accepted, 18 pages, including 5 figures, 1 tabl

    Five Years of Mid-Infrared Evolution of the Remnant of SN 1987A: The Encounter Between the Blast Wave and the Dusty Equatorial Ring

    Get PDF
    We have used the Spitzer satellite to monitor the mid-IR evolution of SN 1987A over a 5 year period spanning the epochs between days 6000 and 8000 since the explosion. The supernova (SN) has evolved into a supernova remnant (SNR) and its radiative output is dominated by the interaction of the SN blast wave with the pre-existing equatorial ring (ER). The mid-IR spectrum is dominated by emission from ~180 K silicate dust, collisionally-heated by the hot X-ray emitting gas with a temperature and density of ~5x10^6 K and 3x10^4 cm-3, respectively. The mass of the radiating dust is ~1.2x10^(-6) Msun on day 7554, and scales linearly with IR flux. The infrared to soft-X-ray flux ratio is roughly constant with a value of 2.5. Gas-grain collisions therefore dominate the cooling of the shocked gas. The constancy of of this ratio suggests that very little grain processing or gas cooling have occurred throughout this epoch. The shape of the dust spectrum remained unchanged during the observations while the total flux increased with a time dependence of t^(0.87), t being the time since the first encounter between the blast wave and the ER. These observations are consistent with the transitioning of the blast wave from free expansion to a Sedov phase as it propagates into the main body of the ER.Comment: Accepted for publication in the ApJ, 11 pages, 11 figure

    Spitzer Space Telescope Infrared Imaging and Spectroscopy of the Crab Nebula

    Get PDF
    We present 3.6, 4.5, 5.8, 8.0, 24, and 70 micron images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, Low- and High-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared ground-based image made in the light of [Fe II]1.644 micron. The 8.0 micron image, made with a bandpass that includes [Ar II]7.0 micron, resembles the general morphology of visible H-alpha and near-IR [Fe II] line emission, while the 3.6 and 4.5 micron images are dominated by continuum synchrotron emission. The 24 micron and 70 micron images show enhanced emission that may be due to line emission or the presence of a small amount of warm dust in the nebula on the order of less than 1% of a solar mass. The ratio of the 3.6 and 4.5 micron images reveals a spatial variation in the synchrotron power law index ranging from approximately 0.3 to 0.8 across the nebula. Combining this information with optical and X-ray synchrotron images, we derive a broadband spectrum that reflects the superposition of the flatter spectrum jet and torus with the steeper diffuse nebula, and suggestions of the expected pileup of relativistic electrons just before the exponential cutoff in the X-ray. The pulsar, and the associated equatorial toroid and polar jet structures seen in Chandra and HST images (Hester et al. 2002) can be identified in all of the IRAC images. We present the IR photometry of the pulsar. The forbidden lines identified in the high resolution IR spectra are all double due to Doppler shifts from the front and back of the expanding nebula and give an expansion velocity of approximately 1264 km/s.Comment: 21 pages, 4 tables, 16 figure

    Spitzer IRAC Observations of Star Formation in N159 in the LMC

    Full text link
    We present observations of the giant HII region complex N159 in the LMC using IRAC on the {\it Spitzer Space Telescope}. One of the two objects previously identified as protostars in N159 has an SED consistent with classification as a Class I young stellar object (YSO) and the other is probably a Class I YSO as well, making these two stars the youngest stars known outside the Milky Way. We identify two other sources that may also be Class I YSOs. One component, N159AN, is completely hidden at optical wavelengths, but is very prominent in the infrared. The integrated luminosity of the entire complex is L 9×106\approx 9\times10^6L_{\odot}, consistent with the observed radio emission assuming a normal Galactic initial mass function (IMF). There is no evidence for a red supergiant population indicative of an older burst of star formation. The N159 complex is 50 pc in diameter, larger in physical size than typical HII regions in the Milky Way with comparable luminosity. We argue that all of the individual components are related in their star formation history. The morphology of the region is consistent with a wind blown bubble $\approx 1-2Myr-old that has initiated star formation now taking place at the rim. Other than its large physical size, star formation in N159 appears to be indistinguishable from star formation in the Milky Way.Comment: 14 figure

    The Building of Galactic Disks: Insights from the Triangulum Spiral Galaxy Messier 33

    Get PDF
    The Triangulum Spiral Galaxy Messier 33 offers unique insights into the building of a galactic disk. We identify spectacular arcs of intermediate age (0.6 Gyr - 2 Gyr) stars in the low-metallicity outer disk. The northern arc spans approx. 120 degrees in azimuth and up to 5 arcmin in width. The arcs are located 2-3 disk scale lengths from the galaxy centre (where 1 disk scale length is equivalent to 0.1 degrees in the V-band) and lie precisely where there is a warp in the HI profile of M33. Warps and infall are inextricably linked (Binney, 1992). We present spectroscopy of candidate stars in the outer northern arc, secured using the Keck I telescope in Hawaii. The target stars have estimated visual magnitudes as faint as V ~ 25m. Absorption bands of CN are seen in all spectra reported in this review talk, confirming their carbon star status. Also presented are PAH emissivity radial profiles generated from IRAC observations of M33 using the Spitzer Space Telescope. A dramatic change of phase in the m=2 Fourier component is detected at the domain of the arcs. M33 serves as an excellent example how the disks of spiral galaxies in our Universe are built: as dynamically open systems, growing from the inward, outward.Comment: Invited review paper presented at IAU Simposium 235, Galaxy Evolution Across the Hubble Time, Prague. To be published by Cambridge University Press, eds. F. Combes & J. Palou

    A Spitzer Study of Comets 2P/Encke, 67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT)

    Get PDF
    We present infrared images and spectra of comets 2P/Encke, 67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT) as part of a larger program to observe comets inside of 5 AU from the sun with the Spitzer Space Telescope. The nucleus of comet 2P/Encke was observed at two vastly different phase angles (20 degrees and 63 degrees). Model fits to the spectral energy distributions of the nucleus suggest comet Encke's infrared beaming parameter derived from the near-Earth asteroid thermal model may have a phase angle dependence. The observed emission from comet Encke's dust coma is best-modeled using predominately amorphous carbon grains with a grain size distribution that peaks near 0.4 microns, and the silicate contribution by mass to the sub-micron dust coma is constrained to 31%. Comet 67P/Churyumov-Gerasimenko was observed with distinct coma emission in excess of a model nucleus at a heliocentric distance of 5.0 AU. The coma detection suggests that sublimation processes are still active or grains from recent activity remain near the nucleus. Comet C/2001 HT50 (LINEAR-NEAT) showed evidence for crystalline silicates in the spectrum obtained at 3.2 AU and we derive a silicate-to-carbon dust ratio of 0.6. The ratio is an order of magnitude lower than that derived for comets 9P/Tempel 1 during the Deep Impact encounter and C/1995 O1 (Hale-Bopp).Comment: Accepted for publication in the Astrophysical Journal 48 pages, 15 figures, 10 table
    corecore