1,794 research outputs found
Strong exciton-erbium coupling in Si nanocrystal-doped SiO2
Silicon nanocrystals were formed in SiO2 using Si ion implantation followed by thermal annealing. The nanocrystal-doped SiO2 layer was implanted with Er to a peak concentration of 1.8 at. %. Upon 458 nm excitation the sample shows a broad nanocrystal-related luminescence spectrum centered around 750 nm and two sharp Er luminescence lines at 982 and 1536 nm. By measuring the excitation spectra of these features as well as the temperature-dependent intensities and luminescence dynamics we conclude that (a) the Er is excited by excitons recombining within Si nanocrystals through a strong coupling mechanism, (b) the Er excitation process at room temperature occurs at a submicrosecond time scale, (c) excitons excite Er with an efficiency >55%, and (d) each nanocrystal can have at most ~1 excited Er ion in its vicinity
Predicting the On-Study Relapse Rate for Multiple Sclerosis Patients in Clinical Trials
Background: The annual relapse rate has been commonly used as a primary efficacy endpoint in phase III multiple sclerosis (MS) clinical trials. The aim of this study was to determine the relative contribution of different possible prognostic factors available at baseline to the on-study relapse rate in MS. Methods: A total of 821 patients from the placebo arms of the Sylvia Lawry Centre for Multiple Sclerosis Research (SLCMSR) database were available for this analysis. The univariate relationships between on-study relapse rate and the baseline demographic, clinical, and MRI-based predictors were assessed. The multiple relationships were then examined using a Poisson regression model. Two predictor subsets were selected. Subset 1 included age at disease onset, disease duration, gender, Expanded Disability Status Scale (EDSS) at baseline, number of relapses in the last 24 months prior to baseline, and the disease course (RR and SP). Subset 2 consisted of Subset 1 plus gadolinium enhancement status in MRI. The number of patients for developing the models with no missing values was 727 for Subset 1 and 306 for Subset 2. Results:The univariate relationships show that the on-study relapse rate was higher for younger and for female patients, for RR patients than for SP patients, and for patients with positive enhancement status at entry (Wilcoxon test, p<0.05). A higher on-study relapse rate was associated with a shorter disease duration, lower entry EDSS, more pre-study relapses and more enhancing lesions in T1 at entry. The fitted Poisson model shows that disease duration (estimate=-0.02) and previous relapse number (estimate=0.59 for 1, 0.91 for 2 and 1.45 for 3 or more relapses vs 0 relapse) remain. We were able to confirm these findings in a second, independent dataset. Conclusions: The relapse number prior to entry into clinical trials together with disease duration are the best predictors for the on-study relapse rate. Disease course and gadolinium enhancement status, given the other covariates, have no significant influence on the on-study relapse rate
Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory
The excitation of surface plasmons (SPs) by optically excited silicon quantum dots (QDs) located near a Ag interface is studied both experimentally and theoretically for different QD-interface separations. The Si QDs are formed in the near-surface region of an SiO2 substrate by Si ion implantation and thermal annealing. Photoluminescence decay-rate distributions, as derived from an inverse Laplace transform of the measured decay trace, are determined for samples with and without a Ag cover layer. For the smallest, investigated Si-QDs-to-interface distance of 44 nm the average decay rate at lambda=750 nm is enhanced by 80% due to the proximity of the Ag-glass interface, with respect to an air-glass interface. Calculations based on a classical dipole oscillator model show that the observed decay rate enhancement is mainly due to the excitation of surface plasmons that are on the SiO2/Ag interface. By comparing the model calculations to the experimental data, it is determined that Si QDs have a very high internal emission quantum efficiency of (77±17)%. At this distance they can excite surface plasmons at a rate of (1.1±0.2)Ă104 sÂż1. From the model it is also predicted that by using thin metal films the excitation of surface plasmons by Si QDs can be further enhanced. Si QDs are found to preferentially excite symmetric thin-film surface plasmons
Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides
We identify a route towards achieving a negative index of refraction at
optical frequencies based on coupling between plasmonic waveguides that support
backwards waves. We show how modal symmetry can be exploited in
metal-dielectric waveguide pairs to achieve negative refraction of both phase
and energy. By properly controlling coupling between adjacent waveguides, a
metamaterial consisting of a one-dimensional multilayer stack exhibiting an
isotropic index of -1 can be achieved at a free-space wavelength of 400 nm. The
general concepts developed here may inspire new low-loss metamaterial designs
operating close to the metal plasma frequency.Comment: 8 pages, 7 figure
Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model
A numerical analysis of surface plasmon dispersion, propagation, and localization on smooth lossy films is presented. Particular attention is given to determining wavelength-dependent behavior of thin Ag slab waveguides embedded in a symmetric SiO2 environment. Rather than considering Ag as a damped free electron gas, the metal is defined by the experimentally determined optical constants of Johnson and Christy and Palik. As in free electron gas models, analytic dispersion results indicate a splitting of plasmon modesâcorresponding to symmetric and antisymmetric field distributionsâas film thickness is decreased below 50 nm. However, unlike free electron gas models, the surface plasmon wave vector remains finite at resonance with the antisymmetric-field plasmon converging to a pure photon mode for very thin films. In addition, allowed excitation modes are found to exist between the bound and radiative branches of the dispersion curve. The propagation characteristics of all modes are determined, and for thin films (depending upon electric field symmetry), propagation distances range from microns to centimeters in the near infrared. Propagation distances are correlated with both the field decay (skin depth) and energy density distribution in the metal and surrounding dielectric. While the energy density of most long-range surface plasmons exhibits a broad spatial extent with limited confinement in the waveguide, it is found that high-field confinement does not necessarily limit propagation. In fact, enhanced propagation is observed for silver films at ultraviolet wavelengths despite strong field localization in the metal. The surface plasmon characteristics described in this paper provide a numerical springboard for engineering nanoscale metal plasmon waveguides, and the results may provide a new avenue for integrated optoelectronic applications
Purcell factor enhanced scattering efficiency in optical microcavities
Scattering processes in an optical microcavity are investigated for the case
of silicon nanocrystals embedded in an ultra-high Q toroid microcavity. Using a
novel measurement technique based on the observable mode-splitting, we
demonstrate that light scattering is highly preferential: more than 99.8% of
the scattered photon flux is scattered into the original doubly-degenerate
cavity modes. The large capture efficiency is attributed to an increased
scattering rate into the cavity mode, due to the enhancement of the optical
density of states over the free space value and has the same origin as the
Purcell effect in spontaneous emission. The experimentally determined Purcell
factor amounts to 883
Size-dependent electron-hole exchange interaction in Si nanocrystals
Silicon nanocrystals with diameters ranging from [approximate]2 to 5.5 nm were formed by Si ion implantation into SiO2 followed by annealing. After passivation with deuterium, the photoluminescence (PL) spectrum at 12 K peaks at 1.60 eV and has a full width at half maximum of 0.28 eV. The emission is attributed to the recombination of quantum-confined excitons in the nanocrystals. The temperature dependence of the PL intensity and decay rate at several energies between 1.4 and 1.9 eV was determined between 12 and 300 K. The temperature dependence of the radiative decay rate was determined, and is in good agreement with a model that takes into account the energy splitting between the excitonic singlet and triplet levels due to the electron-hole exchange interaction. The exchange energy splitting increases from 8.4 meV for large nanocrystals ([approximate]5.5 nm) to 16.5 meV for small nanocrystals ([approximate]2 nm). For all nanocrystal sizes, the radiative rate from the singlet state is 300â800 times larger than the radiative rate from the triplet state
Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles
Linear arrays of very small Ag nanoparticles (diameter ~10 nm, spacing 0â4 nm) were fabricated in sodalime glass using an ion irradiation technique. Optical extinction spectroscopy of the arrays reveals a large polarization-dependent splitting of the collective plasmon extinction band. Depending on the preparation condition, a redshift of the longitudinal resonance as large as 1.5 eV is observed. Simulations of the three-dimensional electromagnetic field evolution are used to determine the resonance energy of idealized nanoparticle arrays with different interparticle spacings and array lengths. Using these data, the experimentally observed redshift is attributed to collective plasmon coupling in touching particles and/or in long arrays of strongly coupled particles. The simulations also indicate that for closely coupled nanoparticles (1â2 nm spacing) the electromagnetic field is concentrated in nanoscale regions (10 dB radius: 3 nm) between the particles, with a 5000-fold local field intensity enhancement. In arrays of 1-nm-spaced particles the dipolar particle interaction extends to over 10 particles, while for larger spacing the interaction length decreases. Spatial images of the local field distribution in 12-particle arrays of touching particles reveal a particlelike coupled mode with a resonance at 1.8 eV and a wirelike mode at 0.4 eV
- âŠ