3,667 research outputs found

    Introduction of CAA into a mathematics course for technology students to address a change in curriculum requirements

    Get PDF
    The mathematical requirements for engineering, science and technology students has been debated for many years and concern has been expressed about the mathematical preparedness of students entering higher education. This paper considers a mathematics course that has been specifically designed to address some of these issues for technology education students. It briefly chronicles the changes that have taken place over its lifetime and evaluates the introduction of Computer Assisted Assessment (CAA) into a course already being delivered using Computer Aided Learning (CAL). Benefits of CAA can be categorised into four main areas. 1. Educational – achieved by setting short, topic related, assessments, each of which has to be passed, thereby increasing curriculum coverage. 2. Students – by allowing them to complete assessments at their own pace removing the stress of the final examination. 3. Financial – increased income to the institution, by broadening access to the course. Improved retention rate due to self-paced learning. 4. Time – staff no longer required to set and mark exams. Most students preferred this method of assessment to traditional exams, because it increased confidence and reduced stress levels. Self-paced working, however, resulted in a minority of students not completing the tests by the deadline

    Radio-frequency dressed lattices for ultracold alkali atoms

    Get PDF
    Ultracold atomic gases in periodic potentials are powerful platforms for exploring quantum physics in regimes dominated by many-body effects as well as for developing applications that benefit from quantum mechanical effects. Further advances face a range of challenges including the realization of potentials with lattice constants smaller than optical wavelengths as well as creating schemes for effective addressing and manipulation of single sites. In this paper we propose a dressed-based scheme for creating periodic potential landscapes for ultracold alkali atoms with the capability of overcoming such difficulties. The dressed approach has the advantage of operating in a low-frequency regime where decoherence and heating effects due to spontaneous emission do not take place. These results highlight the possibilities of atom-chip technology in the future development of quantum simulations and quantum technologies, and provide a realistic scheme for starting such an exploration

    Exact Quantum Monte Carlo Process for the Statistics of Discrete Systems

    Get PDF
    We introduce an exact Monte Carlo approach to the statistics of discrete quantum systems which does not rely on the standard fragmentation of the imaginary time, or any small parameter. The method deals with discrete objects, kinks, representing virtual transitions at different moments of time. The global statistics of kinks is reproduced by explicit local procedures, the key one being based on the exact solution for the biased two-level system.Comment: 4 pages, latex, no figures, English translation of the paper

    Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen

    Get PDF
    A new variational principle for optimizing thermal density matrices is introduced. As a first application, the variational many body density matrix is written as a determinant of one body density matrices, which are approximated by Gaussians with the mean, width and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state and shock Hugoniot) are presented.Comment: 26 pages, 13 figures. submitted to Phys. Rev. E, October 199

    The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution

    Full text link
    Using our photometric observations taken between 1996 and 2013 and other published data, we derived properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +/- 0.0002 h (all quoted uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +/- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems.Comment: Many changes based on referees comment

    Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley

    Get PDF
    The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with <i>d</i><sub>p</sub> > 0.96 μm and 10% of particle mass for particles with <i>d</i><sub>p</sub> < 0.96 μm. Non-exchangeable aliphatic (H–C), unsaturated aliphatic (H–C–C=), oxygenated saturated aliphatic (H–C–O), acetalic (O–CH–O) and aromatic (Ar–H) protons were determined by proton nuclear magnetic resonance (<sup>1</sup>H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m<sup>−3</sup> for particles with 1.5 < <i>d</i><sub>p</sub> < 3.0 μm to 73.9 ± 12.3 nmol m<sup>−3</sup> for particles with <i>d</i><sub>p</sub> < 0.49 μm. The molar H / C ratios varied from 0.48 ± 0.05 to 0.92 ± 0.09, which were comparable to those observed for combustion-related organic aerosol. The R–H was the most abundant group, representing about 45% of measured total non-exchangeable organic hydrogen concentrations, followed by H–C–O (27%) and H–C–C= (26%). Levoglucosan, amines, ammonium and methanesulfonate were identified in NMR fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of <sup>1</sup>H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ<sup>13</sup>C abundance from −26.81 ± 0.18&permil; for the smallest particles to −25.93 ± 0.31&permil; for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with <i>d</i><sub>p</sub> > 3.0 μm and <i>d</i><sub>p</sub> < 0.96 μm

    Pathogenic Potential to Humans of Bovine Escherichia coli O26, Scotland

    Get PDF
    Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin–producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx&lt;sub&gt;2&lt;/sub&gt; in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26–associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx&lt;sub&gt;2&lt;/sub&gt; phage acquisition
    corecore