3 research outputs found
Stable and mass-conserving high-dimensional simulations with the sparse grid combination technique for full HPC systems and beyond
In the light of the ongoing climate crisis, mastering controlled plasma fusion has the potential to be one of the pivotal scientific achievements of the 21st century. To understand the turbulent fields in confined fusion devices, simulation has been and continues to be both an asset and a challenge. The main limiting factor to large-scale high-fidelity predictive simulations lies in the Curse of Dimensionality, which dominates all grid-based discretizations of plasmas based on the Vlasov-Poisson and Vlasov-Maxwell equations. In the full formulation, they result in six-dimensional grids and fine scales that need to be resolved, leading to a potentially untractable number of degrees of freedom. Typical approaches to this problem - coordinate transformations such as gyrokinetics, grid adaptation, restricting oneself to limited resolutions - do not directly address the Curse of Dimensionality, but rather work around it.
The sparse grid combination technique, which forms the center of this work, is a multiscale approach that alleviates the curse of dimensionality for time-stepping simulations: Multiple regular grid-based simulations are run and update each other’s information throughout the course of simulation time. The present thesis improves upon the former state-of-the-art of the combination technique in three ways: introducing conservation of mass and numerical stability through the use of better-suited multiscale basis functions, optimizing the code for large-scale HPC systems, and extending the combination technique to the widely-distributed setting.
Firstly, this thesis analyzes the often-used hierarchical hat function from the viewpoint of biorthogonal wavelets, which allows to replace the hierarchical hat function by other multiscale functions (such as the mass-conserving CDF wavelets) in a straightforward manner. Numerical studies presented in the thesis show that this not only introduces conservation but also increases accuracy and avoids numerical instabilities - which previously were a major roadblock for large-scale Vlasov simulations with the combination technique.
Secondly, the open-source framework DisCoTec was extended to scale the combination technique up to the available memory of entire supercomputing systems.
DisCoTec is designed to wrap the combination technique around existing grid-based solvers and draws on the inherent parallelism of the combination technique. Among several other contributions, different communication-avoiding multiscale reduction schemes were developed and implemented into DisCoTec as part of this work.
The scalability of the approach is asserted by an extensive set of measurements in this thesis: DisCoTec is shown to scale up to the full system size of four German supercomputers, including the three CPU-based Tier-0/Tier-1 systems.
Thirdly, the combination technique was further extended to the widely-distributed setting, where two HPC systems synchronously run a joint simulation. This is enabled by file transfer as well as sophisticated algorithms for assigning the different simulation instances to the systems, two of which were developed as part of this work. By the resulting drastic reductions in the communication volume, tolerable transfer times for combination technique simulations on different HPC systems have been achieved for the first time.
These three advances - improved numerical properties, scaling efficiently up to full system sizes, and the possibility to extend the simulation beyond a single system - show the sparse grid combination technique to be a promising approach for future high-fidelity simulations of higher-dimensional problems, such as plasma turbulence
A mass-conserving sparse grid combination technique with biorthogonal hierarchical basis functions for kinetic simulations
The exact numerical simulation of plasma turbulence is one of the assets and
challenges in fusion research. For grid-based solvers, sufficiently fine
resolutions are often unattainable due to the curse of dimensionality. The
sparse grid combination technique provides the means to alleviate the curse of
dimensionality for kinetic simulations. However, the hierarchical
representation for the combination step with the state-of-the-art hat functions
suffers from poor conservation properties and numerical instability.
The present work introduces two new variants of hierarchical multiscale basis
functions for use with the combination technique: the biorthogonal and full
weighting bases. The new basis functions conserve the total mass and are shown
to significantly increase accuracy for a finite-volume solution of constant
advection. Further numerical experiments based on the combination technique
applied to a semi-Lagrangian Vlasov--Poisson solver show a stabilizing effect
of the new bases on the simulations
A mass-conserving sparse grid combination technique with biorthogonal hierarchical basis functions for kinetic simulations
The exact numerical simulation of plasma turbulence is one of the assets and challenges in fusion research. For grid-based solvers, sufficiently fine resolutions are often unattainable due to the curse of dimensionality. The sparse grid combination technique provides the means to alleviate the curse of dimensionality for kinetic simulations. However, the hierarchical representation for the combination step with the state-of-the-art hat functions suffers from poor conservation properties and numerical instability. The present work introduces two new variants of hierarchical multiscale basis functions for use with the combination technique: the biorthogonal and full weighting bases. The new basis functions conserve the total mass and are shown to significantly increase accuracy for a finite-volume solution of constant advection. Further numerical experiments based on the combination technique applied to a semi-Lagrangian Vlasov–Poisson solver show a stabilizing effect of the new bases on the simulations