25 research outputs found

    Mitochondrial myopathy in rats fed with a diet containing beta-guanidine propionic acid, an inhibitor of creatine entry in muscle cells.

    Get PDF
    In rats with phosphoryl-creatine depletion (fed a standard Randoin-Causeret diet containing 1% beta-guanidine propionic acid) abnormal mitochondria were observed in slow skeletal muscles, often containing paracrystalline inclusions very like those induced by ischaemia or mitochondrial poisons and in human mitochondrial myopathy

    ENDOCRINE AND AMINO-ACID REGULATION OF LIVER MACROAUTOPHAGY AND PROTEOLYTIC FUNCTION

    Get PDF
    Endocrine and amino acid regulation of liver macroautophagy and proteolytic function. Am, J. Physiol. 266 (Gastrointest. Liver Physiol. 29): G118-G122, 1994.-Regulation of liver macroautophagy and protein degradation by hormones and direct regulatory amino acids were studied in male 2-mo-old Sprague-Dawley albino rats with the use of the antilipolytic agent 3,5'-dimethylpyrazole (DMP; 12 mg/kg body wt ip) as a stimulatory agent. Injection of DMP decreased glutamine plasma levels and glutamine release from the perfused liver. Autophagic vacuoles were observed in the pericanalicular area of liver cells after 30 min. Levels and release of other regulatory amino acids did not exhibit any significant decrease but subsequently increased. Intraperitoneal administration of glutamine inhibited the proteolytic response. In conclusion, these studies demonstrate that in vivo induction and control of liver macroautophagy and protein degradation by the physiological mechanism (i.e., by shortage of nutrients) involve unbalanced and asynchronous changes in the levels of selected direct regulatory amino acids (i.e., a decrease in glutamine and a subsequent increase in leucine and tyrosine levels)

    Proteomic changes in the milk of water buffaloes (Bubalus bubalis) with subclinical mastitis due to intramammary infection by Staphylococcus aureus and by non-aureus staphylococci

    Get PDF
    Subclinical mastitis by Staphylococcus aureus (SAU) and by non-aureus staphylococci (NAS) is a major issue in the water buffalo. To understand its impact on milk, 6 quarter samples with >3,000,000 cells/ mL (3 SAU-positive and 3 NAS-positive) and 6 culture-negative quarter samples with <50,000 cells/ mL were investigated by shotgun proteomics and label-free quantitation. A total of 1530 proteins were identified, of which 152 were significantly changed. SAU was more impacting, with 162 vs 127 differential proteins and higher abundance changes (P < 0.0005). The 119 increased proteins had mostly structural (n = 43, 28.29%) or innate immune defence functions (n = 39, 25.66%) and included vimentin, cathelicidins, histones, S100 and neutrophil granule proteins, haptoglobin, and lysozyme. The 33 decreased proteins were mainly involved in lipid metabolism (n = 13, 59.10%) and included butyrophilin, xanthine dehydrogenase/oxidase, and lipid biosynthetic enzymes. The same biological processes were significantly affected also upon STRING analysis. Cathelicidins were the most increased family, as confirmed by western immunoblotting, with a stronger reactivity in SAU mastitis. S100A8 and haptoglobin were also validated by western immunoblotting. In conclusion, we generated a detailed buffalo milk protein dataset and defined the changes occurring in SAU and NAS mastitis, with potential for improving detection (ProteomeXchange identifier PXD012355)

    Increased degradation in rat liver induced by antilipolytic agents: a model for studying autophagy and protein degradation in liver?

    No full text
    A dramatic increase in the plasma glucagon/insulin ratio can be induced by treating fasted rats with antilipolytic drugs (e.g., with 3,5-dimethylpyrazole, 12 mg/kg body wt). These hormone changes are the physiologically appropriate response to a rapid decrease in free fatty acids and glucose plasma levels. Under this experimental condition, many vacuolated lysosomes can be observed at the electron microscopic level as early as 30 min and autophagic vacuoles are detectable in the liver cells 1 hr after the administration of the drug. By 1 hr and 45 min, vacuoles often contain recognizable peroxisomes. At the biochemical level, liver proteolysis in vitro is increased significantly. Very interestingly, changes in peroxisomal (but not mitochondrial or reticulum or cytosolic) enzyme activities are detected that are preventable by the administration of glutamine (i.e., of an inhibitor of proteolysis in vivo) but not by an isocaloric amount of glycine or alanine. It is concluded that the administration of antilipolytic agents to fasted animals may provide a convenient (i.e., an inexpensive, highly reproducible and timable) physiologic model to study hormone-induced autophagy in liver cells

    Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis

    No full text
    Autophagy is a universal, highly regulated mechanism responsible for the degradation of long-lived proteins, cytomembranes and organelles during fasting and may be the cell repair mechanism that mediates the anti-ageing effects of calorie restriction (Bergamini and Gori, 1995). The function of autophagy was studied in vivo on male Sprague Dawley rats fed ad libitum or 40% food restricted. Autophagy was induced in overnight fasted rats by the injection of an anti-lipolytic agent and was investigated by electron microscopy. Changes in regulatory plasma nutrients and hormones were assessed and rate of proteolysis was calculated from the release of 14C(6)-valine from pre-labelled resident proteins. Results in rats fed ad libitum showed that autophagic-proteolytic response to antilypolitic agents was paramount in one month-old rats; was high but delayed in 2 month-old rats, decreased remarkably in 6 month-old rats and almost negligible at older age. Parallel ageing-related changes were observed in the effects of treatment lowering glucose and insulin plasma levels. Calorie restriction prevented all changes. In view of the known suppressive effects of insulin, it may be concluded that the age-changes of autophagy are secondary to the ageing-related alteration in glucose metabolism and hormone levels, whose appearance is delayed by calorie restriction. Data may support the hypothesis that ad libitum feeding accelerates the rate of ageing by raising insulin plasma levels and suppressing autophagy and membrane maintenance, and that calorie restriction may break this vicious circle
    corecore