22 research outputs found

    Instructional Models for Course-Based Research Experience (CRE) Teaching

    Get PDF
    The course-based research experience (CRE) with its documented educational benefits is increasingly being implemented in science, technology, engineering, and mathematics education. This article reports on a study that was done over a period of 3 years to explicate the instructional processes involved in teaching an undergraduate CRE. One hundred and two instructors from the established and large multi-institutional SEA-PHAGES program were surveyed for their understanding of the aims and practices of CRE teaching. This was followed by large-scale feedback sessions with the cohort of instructors at the annual SEA Faculty Meeting and subsequently with a small focus group of expert CRE instructors. Using a qualitative content analysis approach, the survey data were analyzed for the aims of inquiry instruction and pedagogical practices used to achieve these goals. The results characterize CRE inquiry teaching as involving three instructional models: 1) being a scientist and generating data; 2) teaching procedural knowledge; and 3) fostering project ownership. Each of these models is explicated and visualized in terms of the specific pedagogical practices and their relationships. The models present a complex picture of the ways in which CRE instruction is conducted on a daily basis and can inform instructors and institutions new to CRE teaching

    Models of classroom assessment for course-based research experiences

    Get PDF
    Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment—(1) Assessing Laboratory Work and Scientific Thinking; (2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; (3) Appraising Forms of Scientific Communication; and (4) Metacognition of Learning—along with a set of practices for each aim. These aims and practices of assessment were then integrated with previously developed models of course-based research instruction to reveal an assessment program in which instructors provide extensive feedback to support productive student engagement in research while grading those aspects of research that are necessary for the student to succeed. Assessment conducted in this way delicately balances the need to facilitate students’ ongoing research with the requirement of a final grade without undercutting the important aims of a CRE education

    Comments on “Calpain Mediates the Dioxin-Induced Activation and Down-Regulation of the Aryl Hydrocarbon Receptor”

    No full text

    Functional analysis of murine aryl hydrocarbon (AH) receptors defective in nuclear import: Impact on AH receptor degradation and gene

    No full text
    ABSTRACT The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is also a substrate for the 26S proteasome. However, the subcellular location of the degradation events or the requirement for nuclear transport has not been resolved. To gain insight into both ligand-dependent and independent degradation of the AHR, studies were designed to evaluate the relationship between AHR localization, stability, and gene regulation in a defined cell culture model system. The strategy of these studies was to generate stable cell lines expressing murine AHR proteins that were defective in nuclear import and then to assess the location of the AHR, the time course of AHR degradation, and the level of induction of endogenous CYP1A1 protein after exposure to 2,3,7,8-tetrachlorodibezo-p-dioxin (TCDD), geldanamycin (GA), or the protease inhibitor carbobenzoxy-L-leucyl-L-leucyl-leucinal (MG-132). Mutation within the putative nuclear localization sequence (NLS) resulted in AHR mutants that were severely defective in nuclear import as evaluated by immunocytochemical staining after exposure to TCDD, GA, or MG-132. Importantly, the NLS mutants exhibited identical levels of degradation along a similar time course as wild-type AHR after exposure to TCDD or GA when stably expressed in either murine hepatoma cells (Hepa-1) or hamster lung cells (E36). In contrast, the NLS mutants were severely defective in ligand-mediated induction of CYP1A1 expression. These findings imply that the proteolytic machinery present in the cytoplasmic compartment is sufficient to degrade the AHR and that nuclear translocation, binding with ARNT, or DNA binding are not necessary for efficient degradation of the AHR. The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that is a member of the basic-helix-loophelix (bHLH) periodicity/aryl hydrocarbon nuclear translocator (ARNT)/single-minded family of proteins. The current model of AHR-mediated signal transduction proposes that the AHR is activated by ligand, associates with the ARNT protein in the nucleus to modify gene regulation, and then becomes degraded (reviewed i

    Evaluating Psychosocial Mechanisms Underlying STEM Persistence in Undergraduates: Scalability and Longitudinal Analysis of Three Cohorts from a Six-Day Pre–College Engagement STEM Academy Program

    No full text
    In a previous report, we validated that a cohort of first-year undergraduates who participated in a weeklong pre–college engagement STEM Academy (SA) program were retained in science, technology, engineering, and mathematics (STEM) at a higher rate than a matched comparison group (MCG). In addition, SA students yielded increases in science identity and sense of belonging to STEM and to the university. Here, we report the ability to scale the size of the SA program to accommodate more students and replicate the previous findings with two additional cohorts. Longitudinal analysis of the 2015 and 2016 program cohorts demonstrate that both groups were retained to STEM disciplines and the university at higher rates than a MCG. To assess what underlying psychological mechanisms lead to increases in science identity and university belonging, we tested three exploratory models. These models indicate that positive changes in university and STEM belonging indirectly predict an increase in science identity. Further, positive changes in perceived family support indirectly predict increases in university belonging. Thus, through the evaluation of three different cohorts, we found robust evidence that the SA program increases sense of belonging and science identity, and these attitudinal changes promote undergraduate persistence in STEM

    Evaluating Psychosocial Mechanisms Underlying STEM Persistence in Undergraduates: Scalability and Longitudinal Analysis of Three Cohorts from a Six-Day Pre–College Engagement STEM Academy Program

    No full text
    In a previous report, we validated that a cohort of first-year undergraduates who participated in a weeklong pre–college engagement STEM Academy (SA) program were retained in science, technology, engineering, and mathematics (STEM) at a higher rate than a matched comparison group (MCG). In addition, SA students yielded increases in science identity and sense of belonging to STEM and to the university. Here, we report the ability to scale the size of the SA program to accommodate more students and replicate the previous findings with two additional cohorts. Longitudinal analysis of the 2015 and 2016 program cohorts demonstrate that both groups were retained to STEM disciplines and the university at higher rates than a MCG. To assess what underlying psychological mechanisms lead to increases in science identity and university belonging, we tested three exploratory models. These models indicate that positive changes in university and STEM belonging indirectly predict an increase in science identity. Further, positive changes in perceived family support indirectly predict increases in university belonging. Thus, through the evaluation of three different cohorts, we found robust evidence that the SA program increases sense of belonging and science identity, and these attitudinal changes promote undergraduate persistence in STEM
    corecore