7,678 research outputs found
Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM
We present a new, non-flux corrected AOGCM, GENMOM, that combines the GENESIS version 3 atmospheric GCM (Global Environmental and Ecological Simulation of Interactive Systems) and MOM2 (Modular Ocean Model version 2) nominally at T31 resolution. We evaluate GENMOM by comparison with reanalysis products (e.g., NCEP2) and three models used in the IPCC AR4 assessment. GENMOM produces a global temperature bias of 0.6 °C. Atmospheric features such as the jet stream structure and major semi-permanent sea level pressure centers are well simulated as is the mean planetary-scale wind structure that is needed to produce the correct position of stormtracks. Most ocean surface currents are reproduced except where they are not resolvable at T31 resolution. Overall, GENMOM captures reasonably well the observed gradients and spatial distributions of annual surface temperature and precipitation and the simulations are on par with other AOGCMs. Deficiencies in the GENMOM simulations include a warm bias in the surface temperature over the southern oceans, a split in the ITCZ and weaker-than-observed overturning circulation
Primary physical education, coaches and continuing professional development
This is an Author's Accepted Manuscript of an article published in Sport, Education and Society, 16(4), 485 - 505, 2011, copyright @ Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/13573322.2011.589645.Physical education (PE) in primary schools has traditionally been taught by qualified primary teachers. More recently, some teaching of PE in primary schools has been undertaken by coaches (mostly football coaches). These coaches hold national governing body awards but do not hold teaching qualifications. Thus, coaches may not be adequately prepared to teach PE in curriculum time. The purpose of this study was to evaluate the perceptions of a group of community-based football coaches working in primary schools for the impact of a Continuing Professional Development (CPD) programme on their ability to undertake âspecified workâ to cover PE in primary schools. The programme focused on four areas identified as important to enable coaches to cover specified work: short- and medium-term planning, pedagogy, knowledge of the curriculum and reflection. Results showed that for the majority of coaches the CPD programme had made them more aware of the importance of these four areas and had helped to develop their knowledge and ability to put this into practice in covering planning, preparation and assessment time. However, further input is still required to develop coachesâ knowledge and understanding in all four areas, but especially their curriculum knowledge, as well as their ability to put these into practice consistently. These findings are discussed in relation to the implications of employing coaches to cover the teaching of PE in primary schools and, if employed, what CPD coaches need to develop the necessary knowledge, skill and understanding for covering specified work in schools
Structural Polymorphism of the Cytoskeleton: A Model of Linker-Assisted Filament Aggregation
The phase behavior of charged rods in the presence of inter-rod linkers is
studied theoretically as a model for the equilibrium behavior underlying the
organization of actin filaments by linker proteins in the cytoskeleton. The
presence of linkers in the solution modifies the effective inter-rod
interaction and can lead to inter-filament attraction. Depending on the
system's composition and physical properties such as linker binding energies,
filaments will either orient perpendicular or parallel to each other, leading
to network-like or bundled structures. We show that such a system can have one
of three generic phase diagrams, one dominated by bundles, another by networks,
and the third containing both bundle and network-like phases. The first two
diagrams can be found over a wide range of interaction energies, while the
third occurs only for a narrow range. These results provide theoretical
understanding of the classification of linker proteins as bundling proteins or
crosslinking proteins. In addition, they suggest possible mechanisms by which
the cell may control cytoskeletal morphology.Comment: 17 pages, 3 figure
Dynamics of quantum dissipation systems interacting with Fermion and Boson grand canonical bath ensembles: Hierarchical equations of motion approach
A hierarchical equations of motion formalism for a quantum dissipation system
in a grand canonical bath ensemble surrounding is constructed, on the basis of
the calculus-on-path-integral algorithm, together with the parametrization of
arbitrary non-Markovin bath that satisfies fluctuation-dissipation theorem. The
influence functionals for both the Fermion or Boson bath interaction are found
to be of the same path-integral expression as the canonical bath, assuming they
all satisfy the Gaussian statistics. However, the equation of motion formalism
are different, due to the fluctuation-dissipation theories that are distinct
and used explicitly. The implications of the present work to quantum transport
through molecular wires and electron transfer in complex molecular systems are
discussed.Comment: 12page
MHz Unidirectional Rotation of Molecular Rotary Motors
A combination of cryogenic UV-vis and CD spectroscopy and transient absorption spectroscopy at ambient temperature is used to study a new class of unidirectional rotary molecular motors. Stabilization of unstable intermediates is achieved below 95 K in propane solution for the structure with the fastest rotation rate, and below this temperature measurements on the rate limiting step in the rotation cycle can be performed to obtain activation parameters. The results are compared to measurements at ambient temperature using transient absorption spectroscopy, which show that behavior of these motors is similar over the full temperature range investigated, thereby allowing a maximum rotation rate of 3 MHz at room temperature under suitable irradiation conditions
V605 Aql: The Older Twin of Sakurai's Object
New optical spectra have been obtained with VLT/FORS2 of the final helium
shell flash (FF) star, V605 Aql, which peaked in brightness in 1919. New models
suggest that this star is experiencing a very late thermal pulse. The evolution
to a cool luminous giant and then back to a compact hot star takes place in
only a few years. V605 Aql, the central star of the Planetary Nebula (PN), A58,
has evolved from T5000 K in 1921 to 95,000 K today. There are
indications that the new FF star, Sakurai's Object (V4334 Sgr), which appeared
in 1996, is evolving along a similar path. The abundances of Sakurai's Object
today and V605 Aql 80 years ago mimic the hydrogen deficient R Coronae Borealis
(RCB) stars with 98% He and 1% C. The new spectra show that V605 Aql has
stellar abundances similar to those seen in Wolf-Rayet [WC] central stars of
PNe with ~55% He, and ~40% C. The stellar spectrum of V605 Aql can be seen even
though the star is not directly detected. Therefore, we may be seeing the
spectrum in light scattered around the edge of a thick torus of dust seen
edge-on. In the present state of evolution of V605 Aql, we may be seeing the
not too distant future of Sakurai's Object.Comment: 12 pages, 1 figure, ApJ Letters in pres
- âŠ