9,252 research outputs found

    Now the wars are over: The past, present and future of Scottish battlefields

    Get PDF
    Battlefield archaeology has provided a new way of appreciating historic battlefields. This paper provides a summary of the long history of warfare and conflict in Scotland which has given rise to a large number of battlefield sites. Recent moves to highlight the archaeological importance of these sites, in the form of Historic Scotland’s Battlefields Inventory are discussed, along with some of the problems associated with the preservation and management of these important cultural sites

    Stochastic unraveling of Redfield master equations and its application to electron transfer problems

    Full text link
    A method for stochastic unraveling of general time-local quantum master equations (QMEs) is proposed. The present kind of jump algorithm allows a numerically efficient treatment of QMEs which are not in Lindblad form, i.e. are not positive semidefinite by definition. The unraveling can be achieved by allowing for trajectories with negative weights. Such a property is necessary, e.g. to unravel the Redfield QME and to treat various related problems with high numerical efficiency. The method is successfully tested on the damped harmonic oscillator and on electron transfer models including one and two reaction coordinates. The obtained results are compared to those from a direct propagation of the reduced density matrix (RDM) as well as from the standard quantum jump method. Comparison of the numerical efficiency is performed considering both the population dynamics and the RDM in the Wigner phase space representation.Comment: accepted in J. Chem. Phys.; 26 pages, 6 figures; the order of authors' names on the title page correcte

    Off-fault tensile cracks: A link between geological fault observations, lab experiments, and dynamic rupture models

    Get PDF
    We examine the local nature of the dynamic stress field in the vicinity of the tip of a semi-infinite sub-Rayleigh (slower than the Rayleigh wave speed, c_R) mode II crack with a velocity-weakening cohesive zone. We constrain the model using results from dynamic photoelastic experiments, in which shear ruptures were nucleated spontaneously in Homalite-100 plates along a bonded, precut, and inclined interface subject to a far-field uniaxial prestress. During the experiments, tensile cracks grew periodically along one side of the shear rupture interface at a roughly constant angle relative to the shear rupture interface. The occurrence and inclination of the tensile cracks are explained by our analytical model. With slight modifications, the model can be scaled to natural faults, providing diagnostic criteria for interpreting velocity, directivity, and static prestress state associated with past earthquakes on exhumed faults. Indirectly, this method also allows one to constrain the velocity-weakening nature of natural ruptures, providing an important link between field geology, laboratory experiments, and seismology

    The people's choice: community management of RWS

    Get PDF
    The people's choice: community management of RW

    Integration of prosodic and grammatical information in the analysis of dialogs

    Full text link

    Eastern Beringia and beyond: Late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain, Canada

    Get PDF
    Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean δ18O of −29.1‰); this, together with low dexcess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island icethrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial–Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan

    Colony Stimulating Factor-1 Is Required to Recruit Macrophages into the Mammary Gland to Facilitate Mammary Ductal Outgrowth

    Get PDF
    AbstractMammary gland development initiates postnatally with the development of terminal end buds (TEBs) at the end of the rudimentary ducts. These grow out through the fat pad and bifurcate to lay down the rudimentary ductal tree. At the initiation of their development, TEBs recruit to their surrounding stroma a substantial population of macrophages. Using mice homozygous for a null mutation in the gene for the macrophage growth factor, colony stimulating factor-1 (CSF-1), that are severely depleted in macrophages, we demonstrated that CSF-1-regulated macrophages are required for normal branching morphogenesis in the mammary gland. However, these mice have a pleiotropic phenotype as a result of the generalized macrophage deficiency. To test that the effect of the mutation observed in the mammary gland was organ-autonomous, we developed a tetracycline-binary system whereby CSF-1 was specifically expressed in the mammary epithelium under the regulation of the MMTV-promoter. This restored mammary macrophage populations but not those in other tissues and corrected the branching morphogenesis defect. Inhibition of CSF-1 expression by tetracycline treatment for varying periods suggested that CSF-1-regulated macrophages are required throughout early mammary gland development. These data show that macrophages acting locally are required for branching morphogenesis of the mammary gland

    Ultrahigh bacterial production in a eutrophic subtropical Australian river : does viral lysis short-circuit the microbial loop?

    Get PDF
    Author Posting. © American Society of Limnology and Oceanography, 2011. This article is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 56 (2011): 1115-1129, doi:10.4319/lo.2011.56.3.1115.We studied trophic dynamics in a warm eutrophic subtropical river (Bremer River, Australia) to determine potential sources of dissolved organic carbon (DOC) and the fate of heterotrophic bacterial production. Sustained high rates of bacterial production suggested that the exogenous DOC was accessible (labile). Bacterial specific growth rates (0.2 h−1 to 1.8 h−1) were some of the highest measured for natural aquatic ecosystems, which is consistent with high respiration rates. Bacteria consumed 10 times more organic carbon than that supplied by the daily algal production, a result that implies that terrestrial sources of organic carbon were driving the high rates of bacterial production. Viruses (1011 L−1) were 10 times more abundant than bacteria; the viral to bacterial ratio ranged from 3.5 to 12 in the wet summer and 11 to 35 in the dry spring weather typical of eutrophic environments. Through a combination of high bacterial respiration and phage lysis, a continuous supply of terrestrial DOC was lost from the aquatic ecosystem in a CO2-vented bacterial–viral loop. Bacterial processing of DOC in subtropical rivers may be contributing disproportionately large amounts of CO2 to the global carbon cycle compared to temperate freshwater ecosystems.Thanks go to the Coastal Cooperative Research Centre and the Healthy Waterways Partnership for their funding
    corecore