7,646 research outputs found

    Physical properties of aerosols in Titan's atmosphere as deduced from visible observations

    Get PDF
    Analysis of the absolute value of Titan's albedo and its variation with increasing phase angle has yielded constraints on the optical properties and average particle size of the aerosols responsible for the scattering of visible light. The real index of refraction of the scattering material lies within the range 1.5 approximately less than nr approximately less than 2.0 and the average particle size is somewhere between 0.2 micrometer and 0.4 micrometer. The amount of limb darkening produced by these models leads to an occultation radius of approximately 2700 km

    Giant planets: Clues on current and past organic chemistry in the outer solar system

    Get PDF
    The giant planets of the outer solar system - Jupiter, Saturn, Uranus, and Neptune - were formed in the same flattened disk of gas and dust, the solar nebula, as the terrestrial planets were. Yet, the giant planets differ in some very fundamental ways from the terrestrial planets. Despite enormous differences, the giant planets are relevant to exobiology in general and the origin of life on the Earth in particular. The giant planets are described as they are today. Their basic properties and the chemistry occurring in their atmospheres is discussed. Theories of their origin are explored and aspects of these theories that may have relevance to exobiology and the origin of life on Earth are stressed

    How Decoherence Affects the Probability of Slow-Roll Eternal Inflation

    Get PDF
    Slow-roll inflation can become eternal if the quantum variance of the inflaton field around its slowly rolling classical trajectory is converted into a distribution of classical spacetimes inflating at different rates, and if the variance is large enough compared to the rate of classical rolling that the probability of an increased rate of expansion is sufficiently high. Both of these criteria depend sensitively on whether and how perturbation modes of the inflaton interact and decohere. Decoherence is inevitable as a result of gravitationally-sourced interactions whose strength are proportional to the slow-roll parameters. However, the weakness of these interactions means that decoherence is typically delayed until several Hubble times after modes grow beyond the Hubble scale. We present perturbative evidence that decoherence of long-wavelength inflaton modes indeed leads to an ensemble of classical spacetimes with differing cosmological evolutions. We introduce the notion of per-branch observables---expectation values with respect to the different decohered branches of the wave function---and show that the evolution of modes on individual branches varies from branch to branch. Thus single-field slow-roll inflation fulfills the quantum-mechanical criteria required for the validity of the standard picture of eternal inflation. For a given potential, the delayed decoherence can lead to slight quantitative adjustments to the regime in which the inflaton undergoes eternal inflation.Comment: 27 pages, 3 figures; v2 reflects peer review process and has new results in Section

    De Sitter Space Without Dynamical Quantum Fluctuations

    Get PDF
    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincare recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.Comment: version accepted for publication in Foundations of Physic

    Why Boltzmann Brains Don't Fluctuate Into Existence From the De Sitter Vacuum

    Get PDF
    Many modern cosmological scenarios feature large volumes of spacetime in a de Sitter vacuum phase. Such models are said to be faced with a "Boltzmann Brain problem" - the overwhelming majority of observers with fixed local conditions are random fluctuations in the de Sitter vacuum, rather than arising via thermodynamically sensible evolution from a low-entropy past. We argue that this worry can be straightforwardly avoided in the Many-Worlds (Everett) approach to quantum mechanics, as long as the underlying Hilbert space is infinite-dimensional. In that case, de Sitter settles into a truly stationary quantum vacuum state. While there would be a nonzero probability for observing Boltzmann-Brain-like fluctuations in such a state, "observation" refers to a specific kind of dynamical process that does not occur in the vacuum (which is, after all, time-independent). Observers are necessarily out-of-equilibrium physical systems, which are absent in the vacuum. Hence, the fact that projection operators corresponding to states with observers in them do not annihilate the vacuum does not imply that such observers actually come into existence. The Boltzmann Brain problem is therefore much less generic than has been supposed.Comment: Based on a talk given by SMC at, and to appear in the proceedings of, the Philosophy of Cosmology conference in Tenerife, September 201

    The relation between solar cell flight performance data and materials and manufacturing data Final report

    Get PDF
    Flight performance data for solar cell power systems in satellites and correlation with manufacturing methods and material

    Models of the formation of the planets in the 47 UMa system

    Get PDF
    Formation of planets in the 47 UMa system is followed in an evolving protoplanetary disk composed of gas and solids. The evolution of the disk is calculated from an early stage, when all solids, assumed to be high-temperature silicates, are in the dust form, to the stage when most solids are locked in planetesimals. The simulation of planetary evolution starts with a solid embryo of ~1 Earth mass, and proceeds according to the core accretion -- gas capture model. Orbital parameters are kept constant, and it is assumed that the environment of each planet is not perturbed by the second planet. It is found that conditions suitable for both planets to form within several Myr are easily created, and maintained throughout the formation time, in disks with α0.01\alpha \approx 0.01. In such disks, a planet of 2.6 Jupiter masses (the minimum for the inner planet of the 47 UMa system) may be formed at 2.1 AU from the star in \~3 Myr, while a planet of 0.89 Jupiter masses (the minimum for the outer planet) may be formed at 3.95 AU from the star in about the same time. The formation of planets is possible as a result of a significant enhancement of the surface density of solids between 1.0 and 4.0 AU, which results from the evolution of a disk with an initially uniform gas-to-dust ratio of 167 and an initial radius of 40 AU.Comment: Accepted for publication in A&A. 10 pages, 10 figure

    Complex Projects: What are they and how can we manage them more effectively?

    Full text link
    The word `complex is now being widely used to describe projects which are extraordinarily difficult to manage and control. Are these projects just very difficult or do they exhibit special characteristics that entitle them to be called `complex? Some authors argue that so-called `complex projects are simply larger projects with more stakeholder issues. Nevertheless, there is a growing recognition amongst project practitioners and academics that particular projects seem to be more than just difficult and these projects have very special characteristics that pose extraordinary management challenges. This paper argues that these special projects exhibit aspects in common with `complex adaptive systems. If we accept that some projects behave in very different or unpredictable ways, how do we manage them? This is the practical question at the focus of this paper. Do approaches exist which will assist the practitioner with these special or `complex projects? The paper presents a discussion of project complexity using `complex adaptive systems thinking as a lens. Findings from part of a continuing research program are presented and discusse

    Complex Infrastructure Projects: A systemic model for management

    Full text link
    corecore