104 research outputs found

    Synthesis and Characterisation of Bis-azido Methyl Oxetane and its Polymer and Copolymer with Tetrahydrofuran

    Get PDF
    Bis-azido methyl oxetane (BAMO) was synthesised from pentaerythritol in two steps. Pentaerythritol was chlorinated to yield a mixture of mono, di, tri and tetra chloro compounds. The trichloro compound on ring closure gives bis-chloro methyl oxetane (BCMO). It was reacted with sodium azide in aqueous medium to obtain BAMO. The latter was polymerised using BF3 etherate catalyst and 1,4-butanediol initiator. Similarly, the BAMO- THF copolymer was also synthesised. All the monomers and polymers were characterised by IR, 1H-NMR, 13C-NMR, and refractive index. The polymers were also characterised for molecular weight, hydroxyl value, etc. Thermal analysis showed that both polymers degrade exothermically with T max of 237 °C for poly BAMO and 241°C for BAMO- THF copolymer with activation energy of 39 kcal/mol and 40 kcal/mol, respectively. Explosive properties like impact and friction sensitivity of BAMO and the other polymers were also determined

    Development and validation of a liquid chromatography–tandem mass spectrometry (LC–MS/MS) method including 25 novel synthetic opioids in hair and subsequent analysis of a Swiss opioid consumer cohort

    Get PDF
    Major public health concern is raised by the evidence that common drugs like heroin are now frequently laced or replaced with highly potent novel synthetic opioids (NSOs). The objective of this study was to explore the prevalence and patterns of NSOs in a cohort of Swiss opioid users by hair analysis. Hair analysis is considered an ideal tool for retrospective consumption monitoring. Hair samples from 439 opioid users in Zurich were analyzed. Study inclusion required a previous positive hair test result for heroin metabolites, oxycodone, fentanyl, methadone, or tramadol. The samples were extracted with a two‐step extraction procedure, followed by a targeted LC–MS/MS (QTRAP® 6500+) analysis in multiple reaction monitoring mode for a total of 25 NSOs. The method underwent full validation and demonstrated good selectivity and sensitivity with limits of detection (LOD) as low as 0.1 pg/mg. The analyzed sample cohort demonstrated a positivity rate for NSOs of 2.5%, including the following NSOs: butyrylfentanyl, acrylfentanyl, furanylfentanyl, methoxyacetylfentanyl, ocfentanil, U‐47700, isobutyrylfentanyl and benzylfentanyl. Furthermore, we were able to identify specific consumption patterns among drug users. The results indicate that hair analysis is a valuable tool for investigating the prevalence of NSOs in drug‐using populations, which seems to be low in the case of Swiss opioid users. Nevertheless, the results highlight the need for sensitive analytical detection methods in forensic toxicology to identify and monitor substance distribution in different populations

    Enhanced mitochondrial genome analysis: bioinformatic and long-read sequencing advances and their diagnostic implications

    Get PDF
    Introduction: Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. Areas covered: In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. Expert opinion: We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants

    Elevated 4R-tau in astrocytes from asymptomatic carriers of the MAPT 10+16 intronic mutation

    Get PDF
    The microtubule-associated protein tau gene (MAPT) 10+16 intronic mutation causes frontotemporal lobar degeneration (FTLD) by increasing expression of four-repeat (4R)-tau isoforms. We investigated the potential role for astrocytes in the pathogenesis of FTLD by studying the expression of 4R-tau. We derived astrocytes and neurons from induced pluripotent stem cells from two asymptomatic 10+16 carriers which, compared to controls, showed persistently increased 4R:3R-tau transcript and protein ratios in both cell types. However, beyond 300 days culture, 10+16 neurons showed less marked increase of this 4R:3R-tau transcript ratio compared to astrocytes. Interestingly, throughout maturation, both 10+16 carriers consistently displayed different 4R:3R-tau transcript and protein ratios. These elevated levels of 4R-tau in astrocytes implicate glial cells in the pathogenic process and also suggests a cell-type-specific regulation and may inform and help on treatment of pre-clinical tauopathies

    Mutations in noncoding regions of GJB1 are a major cause of X-linked CMT

    Get PDF
    OBJECTIVE: To determine the prevalence and clinical and genetic characteristics of patients with X-linked Charcot-Marie-Tooth disease (CMT) due to mutations in noncoding regions of the gap junction β-1 gene (GJB1). METHODS: Mutations were identified by bidirectional Sanger sequence analysis of the 595 bases of the upstream promoter region, and 25 bases of the 3′ untranslated region (UTR) sequence in patients in whom mutations in the coding region had been excluded. Clinical and neurophysiologic data were retrospectively collected. RESULTS: Five mutations were detected in 25 individuals from 10 kindreds representing 11.4% of all cases of CMTX1 diagnosed in our neurogenetics laboratory between 1996 and 2016. Four pathogenic mutations, c.-17G>A, c.-17+1G>T, c.-103C>T, and c.-146-90_146-89insT were detected in the 5′UTR. A novel mutation, c.*15C>T, was detected in the 3′ UTR of GJB1 in 2 unrelated families with CMTX1 and is the first pathogenic mutation in the 3′UTR of any myelin-associated CMT gene. Mutations segregated with the phenotype, were at sites predicted to be pathogenic, and were not present in the normal population. CONCLUSIONS: Mutations in noncoding DNA are a major cause of CMTX1 and highlight the importance of mutations in noncoding DNA in human disease. Next-generation sequencing platforms for use in inherited neuropathy should therefore include coverage of these regions

    Charcot-Marie-Tooth disease type 2CC due to NEFH variants causes a progressive, non-length-dependent, motor-predominant phenotype

    Get PDF
    Objective: Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). Methods: In this large observational study, we present phenotype–genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families. Results: The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients. All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3′-UTR). Conclusions: This phenotype–genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease’s unique molecular genetics

    Genetic and clinical characteristics of NEFL-related Charcot-Marie-Tooth disease

    Get PDF
    OBJECTIVES: To analyse and describe the clinical and genetic spectrum of Charcot-Marie-Tooth disease (CMT) caused by mutations in the neurofilament light polypeptide gene (NEFL). METHODS: Combined analysis of newly identified patients with NEFL-related CMT and all previously reported cases from the literature. RESULTS: Five new unrelated patients with CMT carrying the NEFL mutations P8R and N98S and the novel variant L311P were identified. Combined data from these cases and 62 kindreds from the literature revealed four common mutations (P8R, P22S, N98S and E396K) and three mutational hotspots accounting for 37 (55%) and 50 (75%) kindreds, respectively. Eight patients had de novo mutations. Loss of large-myelinated fibres was a uniform feature in a total of 21 sural nerve biopsies and 'onion bulb' formations and/or thin myelin sheaths were observed in 14 (67%) of them. The neurophysiological phenotype was broad but most patients with E90K and N98S had upper limb motor conduction velocities <38 m/s. Age of onset was ≤3 years in 25 cases. Pyramidal tract signs were described in 13 patients and 7 patients were initially diagnosed with or tested for inherited ataxia. Patients with E90K and N98S frequently presented before age 3 years and developed hearing loss or other neurological features including ataxia and/or cerebellar atrophy on brain MRI. CONCLUSIONS: NEFL-related CMT is clinically and genetically heterogeneous. Based on this study, however, we propose mutational hotspots and relevant clinical-genetic associations that may be helpful in the evaluation of NEFL sequence variants and the differential diagnosis with other forms of CMT

    X inactivation in females with X-linked Charcot-Marie-Tooth disease.

    Get PDF
    X-linked Charcot-Marie-Tooth disease (CMT1X) is the second most common inherited neuropathy, caused by mutations in gap junction beta-1 (GJB1). Males have a uniformly moderately severe phenotype while females have a variable phenotype, suggested to be due to X inactivation. We aimed to assess X inactivation pattern in females with CMT1X and correlate this with phenotype using the CMT examination score to determine whether the X inactivation pattern accounted for the variable phenotype in females with CMT1X. We determined X inactivation pattern in 67 females with CMT1X and 24 controls using the androgen receptor assay. We were able to determine which X chromosome carried the GJB1 mutation in 30 females. There was no difference in X inactivation pattern between patients and controls. In addition, there was no correlation between X inactivation pattern in blood and phenotype. A possible explanation for these findings is that the X inactivation pattern in Schwann cells rather than in blood may explain the variable phenotype in females with CMT1X

    Interruptions of the FXN GAA Repeat Tract Delay the Age at Onset of Friedreich’s Ataxia in a Location Dependent Manner

    Get PDF
    Copyright: © 2021 by the authors. Friedreich’s ataxia (FRDA) is a comparatively rare autosomal recessive neurological disorder primarily caused by the homozygous expansion of a GAA trinucleotide repeat in intron 1 of the FXN gene. The repeat expansion causes gene silencing that results in deficiency of the frataxin protein leading to mitochondrial dysfunction, oxidative stress and cell death. The GAA repeat tract in some cases may be impure with sequence variations called interruptions. It has previously been observed that large interruptions of the GAA repeat tract, determined by abnormal MboII digestion, are very rare. Here we have used triplet repeat primed PCR (TP PCR) assays to identify small interruptions at the 5′ and 3′ ends of the GAA repeat tract through alterations in the electropherogram trace signal. We found that contrary to large interruptions, small interruptions are more common, with 3′ interruptions being most frequent. Based on detection of interruptions by TP PCR assay, the patient cohort (n = 101) was stratified into four groups: 5′ interruption, 3′ interruption, both 5′ and 3′ interruptions or lacking interruption. Those patients with 3′ interruptions were associated with shorter GAA1 repeat tracts and later ages at disease onset. The age at disease onset was modelled by a group-specific exponential decay model. Based on this modelling, a 3′ interruption is predicted to delay disease onset by approximately 9 years relative to those lacking 5′ and 3′ interruptions. This highlights the key role of interruptions at the 3′ end of the GAA repeat tract in modulating the disease phenotype and its impact on prognosis for the patient.European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement number 242193/EFACTS; National Brain Appeal—Small Acorns Fund; The Wellcome Centre for Human Neuroimaging is supported by core funding from the Wellcome (203147/Z/16/Z); Department of Health’s National Institute for Health Research Biomedical Research Centres funding scheme; CRN; North Thames, National Institute for Health Research (NIHR). Medical Research Council (MR/N028767/1)
    corecore