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ABSTRACT 

Objectives. To analyse and describe the clinical and genetic spectrum of Charcot-

Marie-Tooth disease (CMT) caused by mutations in the neurofilament light 

polypeptide gene (NEFL). 

Methods. Combined analysis of new patients with NEFL-related CMT, identified 

from those attending clinics at the participating institutions, and all previously 

reported cases from the literature. 

Results. Five new unrelated patients with CMT carrying heterozygous NEFL 

mutations (N98S, P8R and L311P) were identified. Combined data from these cases 

and 62 kindreds from the literature revealed four common mutations (P8R, P22S, 

N98S and E396K) and three mutational hotspots accounting for 55% and 75% of 

kindreds, respectively. De novo mutations were identified in eight patients. Loss of 

large-myelinated fibres was a uniform feature in 21 sural nerve biopsies, and ‘onion 

bulb’ formations and/or thin myelin sheaths were observed in 67%. The 

neurophysiological phenotype was broad but most patients carrying the mutations 

E90K and N98S had all reported upper limb motor conduction velocities <38 m/s. 

Age of symptoms onset was ≤ 3 years in 25 cases. Pyramidal tract signs were 

described in 13 patients and seven patients were initially diagnosed with or tested 

for inherited ataxia. Patients with E90K and N98S frequently presented before age 3 

years and developed hearing loss or other neurological features including ataxia or 

cerebellar atrophy on brain MRI.  

Conclusions. NEFL-related CMT is clinically and genetically heterogeneous. Based 

on this study, however, we propose mutational hotspots and relevant clinical-genetic 

associations that may be helpful in the evaluation of NEFL sequence variants and 

the differential diagnosis with other forms of CMT. 
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INTRODUCTION 

Charcot-Marie-Tooth disease (CMT) comprises a heterogeneous group of inherited 

neuropathies clinically characterised by progressive, distal-predominant weakness, 

amyotrophy and sensory loss. CMT is classically divided into demyelinating (CMT1) 

and axonal (CMT2) subtypes based on upper limb motor nerve conduction velocities 

(MNCV) below or above 38 m/s, respectively, although intermediate forms of CMT 

with MNCV of 25-45 m/s are also recognised.1,2 Whilst CMT1 is frequently caused 

by mutations affecting peripheral myelin proteins and CMT2 by mutations in genes 

related to neuronal and axonal functions, there is significant genetic overlap 

between CMT subtypes.1,3 

Neurofilaments are neuron-specific intermediate filaments essential for the radial 

growth of axons during development and the maintenance of the axonal diameter.4 

Like other intermediate filaments, neurofilaments are formed by polymerization of 

subunits, the neurofilament light (NFL), medium and heavy polypeptides, all of which 

contain three major domains: globular N-terminal head, α-helical central rod and C-

terminal tail. The rod domain is required for co-assembly between subunits while the 

head and tail domains are involved in regulation of assembly, axonal transport and 

radial growth.4-7  

Mutations in the NEFL gene encoding NFL were first identified as a cause of 

autosomal dominant CMT in 2000,8 and subsequent reports have confirmed the 

association of NEFL mutations with different phenotypes including CMT1 

(designated CMT1F), CMT2 (designated CMT2E), dominant intermediate CMT and 

autosomal recessive CMT.9-18 Despite the growing number of reports about NEFL-

related CMT published in the past 15 years, it is a rare form of inherited neuropathy, 

accounting for less than 1% of all CMT cases in large cohorts,19,20 and obvious 

genotype-phenotype correlations have not been established so far.21 Here we report 



five new patients with NEFL-related CMT and review all previously published cases 

to describe the clinical and genetic spectrum of the disease. 

METHODS 

Patients and clinical investigations 

Patients with diagnosis of NEFL-related CMT were identified from those attending 

neuropathy clinics at the National Hospital for Neurology and Neurosurgery, Queen 

Square, London, UK, and the Department of Neurology, Carver College of Medicine, 

University of Iowa, Iowa, USA. All patients had undergone clinical and 

investigational assessments during the routine diagnostic process and were under 

follow-up at the time of the study. Skeletal muscle strength was manually tested and 

scored according to the Medical Research Council (MRC) grading system ranging 

from 0 (no movement) to 5 (normal strength). The CMT Examination Score, a 

composite subscale of the CMT Neuropathy Score (version 2) based on symptoms 

and signs, with scores ranging from 0 (normal) to 28 (worst score), was obtained in 

four of the patients.22 Laboratory tests, neurophysiological studies, MRI scans and 

nerve and muscle biopsy specimens were performed and analysed according to 

standard procedures. 

Mutation identification 

In four patients, NEFL mutations were identified by bidirectional Sanger sequencing 

during the diagnostic process or as part of a cohort-based study to determine the 

frequency of CMT subtypes. In one patient, a pathogenic NEFL mutation was 

identified through whole-exome sequencing followed by bidirectional Sanger 

sequencing validation. Sanger sequencing of parents’ samples were performed for 

three cases. Further methodological details are provided in appendix e-1 and table 

e-1. 



Additional published cases 

A systematic literature search to identify all previously published cases of NEFL-

related CMT until July 1, 2016 was performed in PubMed using the terms: “NEFL”, 

“neurofilament light”, “neuropathy” and “Charcot-Marie-Tooth”. These cases and the 

patients from our cohort were combined in order to determine the clinical and 

genetic spectrum of NEFL-related CMT. All cases with at least a simple description 

of the phenotype (CMT subtype and familial vs. individual case) were included in the 

analysis of mutation frequencies. Only cases with a diagnosis of CMT and a more 

detailed clinical and neurophysiological description were included in the phenotypic 

analysis. 

Internal whole-exome data 

Whole-exome sequencing data from 202 patients with suspected hereditary CNS 

disorders investigated at the UCL Institute of Neurology, London, UK, was screened 

for non-synonymous NEFL sequence variants with a minor allele frequency ≤1% in 

the 1000 Genomes (http://www.1000genomes.org/) and the Exome Variant Server 

(http://evs.gs.washington.edu/EVS/) datasets. 

Bioinformatic analyses 

NEFL sequence variants are described in accordance with the recommendations of 

the Human Genome Variation Society (http://www.hgvs.org/mutnomen/) using 

GenBank NM_006158.4 as the reference sequence. Minor allele frequencies of all 

NEFL variants were obtained from the Exome Aggregation Consortium (ExAC) 

browser version 0.3 (http://exac.broadinstitute.org) using genomic coordinates from 

the human reference genome assembly 19 (GRCh37). Evolutionary conservation of 

nucleotides was assessed using phyloP (46 vertebrate basewise conservation) and 

GERP scores, which were accessed through the UCSC Genome Browser 

(https://genome.ucsc.edu/cgi-bin/hgGateway) using genomic coordinates from 

http://www.1000genomes.org/
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org/
https://genome.ucsc.edu/cgi-bin/hgGateway


GRCh37. Grantham scores were used to assess the physicochemical nature of the 

amino acid substitutions.23 In silico analyses of sequence variants were performed 

using SIFT (http://sift.jcvi.org/), PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/) 

and CADD (http://cadd.gs.washington.edu/). 

Ethics approval 

All human studies were approved by the ethics committee of the National Hospital 

for Neurology and Neurosurgery and UCL Institute of Neurology, London, UK, and 

the Institutional Review Board of the Carver College of Medicine, University of Iowa, 

Iowa, USA. All patients and their relatives provided written informed consent prior to 

genetic testing. 

RESULTS 

Case series 

Five unrelated patients with NEFL-related CMT were identified at the participating 

institutions. Clinical and investigational data is summarised in table 1 and a more 

detailed clinical description is provided in appendix e-1. 

Patients 1, 2 and 3 (figure 1) carried the heterozygous pathogenic mutation N98S. 

All had a similar phenotype consisting of motor developmental delay, hypotonia and 

walking difficulties before age 3-4 years, bilateral hearing loss requiring hearing aids 

between ages 5-8 years, progressive distal greater than proximal motor impairment 

within the first two decades, and marked proprioceptive sensory deficit with positive 

Romberg’s test and gait ataxia. Patients 1 and 2, who had the longest follow-up, 

also developed proximal lower limb weakness and scapular winging, appendicular 

ataxia, and cerebellar features supported by neuro-otological examination or brain 

MRI (figure 2). Additional features included tongue hemiatrophy in patient 1, mild 

cervical spinal cord volume loss in patients 1 and 2, and optic nerve hypoplasia in 

http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://cadd.gs.washington.edu/


patient 3. Neurophysiological studies were consistent with a length-dependent motor 

and sensory neuropathy with reduced or absent compound muscle action potential 

(CMAP) amplitudes and upper limb MNCV ranging from 23 to 35 m/s 

(corresponding CMAPs 1.5 mV 0.8 mV; table e-2). In patients 1 and 2, ulnar nerve 

CMAP waveforms were dispersed or complex on proximal stimulation. Co-

segregation analyses indicated that the heterozygous mutation N98S occurred de 

novo in the three probands. Biological paternity was confirmed by short-tandem 

repeat analysis for patients 1 and 2 (results not shown; patient 3 was not tested). 

Patient 4 carried the heterozygous pathogenic mutation P8R. He developed 

progressive distal motor and sensory impairment from the second decade along with 

restless legs syndrome and periodic limb movements disorder. Neurophysiological 

studies in his 40s revealed a length-dependent motor and sensory neuropathy with 

reduced or absent CMAP amplitudes and upper limb MNCV ranging from 31 to 44 

m/s (corresponding CMAPs 1.7 mV; table e-2). 

Patient 5 carried the novel heterozygous mutation L311P. He presented in the sixth 

decade with hand tremor followed with gait ataxia and muscle weakness and 

atrophy in the lower limbs. Neurophysiological studies confirmed a length-dependent 

motor and sensory neuropathy with reduced CMAP amplitudes in the lower limbs, 

upper limb MNCV ranging from 43 to 55 m/s (corresponding CMAPs 6.6 and 5.4 

mV), and dispersion of CMAP waveforms in two nerve segments (table e-2). 

Sural nerve biopsies from patients 2 and 4 at ages 24 and 46, respectively, showed 

severe reduction in myelinated fibre density with a nearly  complete absence of 

large myelinated fibres (figure 3A and B). Immunostaining for neurofilament proteins 

showed reduced density of axons, mainly of large axonscaliber. There was no 

evidence of active axonal degeneration. Definite Occasional regeneration clusters 

were observed in patient 4. Both biopsies contained irregularly-shaped fibres. 



Disproportionately thin myelin sheaths and onion bulbs, confirmed by electron 

microscopy imaging, were seen in patient 2 (figure 3C) but not in patient 4 (figure 

3D). 

Literature review 

A systematic review of the literature revealed published data on 62 kindreds with 

NEFL-related CMT.8-18,24-48 These cases and the five unrelated patients from our 

cohort were combined for analysis. 

Mutational spectrum 

A total of 30 different NEFL mutations have been reported to date (tables 2 and e-

3).8-18,24-48 For descriptive reasons, the mutations c.22_23delCCinsAG and c.23C>G, 

causing the same amino acid substitution (P8R), were classified as one single 

mutation. For two mutations (E186* and Q334P) there was no clinical data available. 

R421* has been reported in a family with an overlapping myopathic-neurogenic 

phenotype40 and also in association with CMT41 but no clinical details were available 

for the latter. 

Of the remainder 27 mutations, 17 were private to a single kindred and 10 were 

observed in two or more kindreds. Twenty-four mutations were clustered in six 

regions of the NFL polypeptide (figure 4): the initial segment of the head domain 

(amino acid positions 8-22), the junction between the head and the rod domains (90-

98), coil 2A (265-268), the mid portion of coil 2B (311-336), the end portion of coil 

2B (384-396), and the tail subdomain A (421-440). Mutations in the head domain 

and the two ends of the rod domain accounted for 75% of kindreds and four 

common mutations within these regions (P8R, P22S, N98S, and E396K) were 

observed in 55% of kindreds. Only three mutations (E140*, A149v, and E210*) were 

located in coil 1B. No mutations were observed in linker regions of the rod domain or 

the tail subdomain B. 



A detailed analysis of all mutations, including conservation and pathogenicity 

prediction scores, is provided in table e-3. Pathogenicity for 23 of the 30 mutations 

was supported by co-segregation studies, existence of other mutations in the same 

amino acid position, detection in more than one kindred or functional studies (in vitro 

or animal models). This information was not available for the remaining seven 

mutations (E186*, L311P, L333P, Q334P, L336P, F439I and R421*); of these, only 

F439I is described in the EXaC dataset, being present in 13 alleles (minor allele 

frequency of 0.01%). 

Inheritance pattern 

Of the 67 kindreds with NEFL mutations, 27 correspond to individual cases and 40 

correspond to families or familial cases. Of the latter, 29 had an autosomal dominant 

inheritance based on co-segregation analysis. This was not reported or was not 

available in nine additional families with probable autosomal dominant inheritance; 

only two of them, however, had private mutations (L311P reported in this study and 

P8Q). The inheritance pattern was autosomal recessive in two consanguineous 

families in which all affected individuals had homozygous nonsense mutations 

located in coil 1B (E140* and E210*).13,14 

Of the 27 individual cases analysed, one was adopted and 26 were reported as 

isolated or sporadic. Eight of these patients had de novo mutations based on co-

segregation analysis. Of note, 11 out of 15 patients with substitutions of amino acids 

E90 and N98 (E90K and N98S/T) were isolated/sporadic and six of them had 

confirmed de novo mutations.10,14  

Neurophysiologic pattern 

A neurophysiologic classification of the peripheral neuropathy was reported for 58 

individual cases or families with the following distribution: CMT1 or demyelinating 

neuropathy in 18 kindreds (31%), CMT2 or axonal neuropathy in 23 kindreds (40%), 



and intermediate CMT or neuropathy with axonal and demyelinating features in 17 

kindreds (29%).8,9,11-18,24-34,36,37,39,42,43,45,46,48  

Upper limb nerve conduction data was available for 115 patients from 53 kindreds: 

44 patients (38%) had all reported upper limb MNCV ≥38 m/s, 24 patients (21%) 

had upper limb MNCV ranging from <38 and ≥38 m/s, and 47 patients (41%) had all 

reported upper limb MNCV <38 m/s.10,11,13-18,24,25,27-33,35,36,38,39,46,47 Upper limb CMAP 

values were available in 21 patients from the latter group, of whom 18 had 

amplitudes ≥75% of lower limit of normal. 

Analysis of the same upper limb MNCV data using 25 m/s and 45 m/s as cut-off 

values revealed that 12 patients (10%) had all reported values >45 m/s, 74 patients 

(64%) had all reported values between 25-45 m/s, and 9 patients (8%) had all 

reported values <25 m/s; the remaining 20 patients had upper limb MNCV in 

overlapping ranges. 

Median and/or ulnar MNCV <20 m/s were detected in eight patients, five of them 

with recessive mutations (E140* and E210*) and three with dominant mutations 

(P8L, E90K and N98S).10,13,14,18 Of the four common NEFL mutations, only N98S 

was consistently associated with upper limb MNCV <38 m/s although MNCV in 

proximal nerve segments varied between 30.1 and 47.8 m/s in one kindred 

(classified as dominant intermediate-CMT).10,14,18,25,35,47 

Sural nerve histopathology 

Twenty-one sural nerve biopsies of patients with NEFL-related CMT, including two 

from our cohort, have been reported to date (table 3)10,11,13,14,16,26,28,29,32,34,39. Loss of 

large myelinated features was a uniform feature. Onion bulbs and thin or irregularly-

folded myelin sheaths were observed in 14 biopsies (67%) and giant axons, with or 

without thin myelin sheaths, were found in six (29%). 



Phenotype-genotype associations 

To date, a total of 173 individuals with NEFL-related CMT have been reported as 

clinically examined.8-18,24,25,28-39,45-47 The majority developed a classical CMT 

phenotype but some of them had atypical features including hearing loss, tremor, 

cerebellar features, and pyramidal tract signs (tables 3 and 4). 

Early onset with delayed motor milestones. Twenty-five patients from 18 kindred had 

onset of symptoms at or before age 3 years.10,13,14,18,32,35,36,38,39,47 Of them, 18 

patients were reported as having delayed walking or motor milestones with or 

without additional features such as hearing loss (11 patients), hypotonia (8 patients), 

intellectual impairment (3 patients), growth retardation (1 patient), or optic nerve 

hypoplasia (1 patient). Four dominant and one recessive mutation were associated 

with both early-onset and motor delay (P8L, E90K, N98S, E210* and E396K). With 

one exception, all patients with substitutions of amino acids E90 and N98 (E90K and 

N98S/T) had onset at age ≤3 years.  

Pyramidal tract signs. A variable combination of brisk reflexes, extensor plantar 

responses and lower limb spasticity (sometimes simply described as upper motor 

neuron involvement), with or without evidence of prolonged central motor conduction 

times, has been observed in 13 patients from 7 kindreds.14,16,17,31,38,45 Except for the 

mutation Y265C, all mutations associated with pyramidal tract signs were located in 

end portion of the rod domain (Y389C and E396K) and the tail subdomain A (F439I 

and P440L). 

Cerebellar features. Limb or gait ataxia (sensory, cerebellar, episodic or described 

as gait ataxia or wide-based gait) was reported in 22 patients but distinction 

between sensory or cerebellar ataxia based on the available data was not always 

possible.11,14-18,28-30 Seven patients carrying the mutations P8R, N98S, L311P, 

C322_N326del and E396K were initially diagnosed with or tested genetically for 



spinocerebellar ataxia or Friedreich’s ataxia, four of them with dysarthria and/or 

nystagmus. Cerebellar atrophy on brain MRI was observed in 4 patients with the 

mutations N98S and E396K (table 3).14,18,47 

Raised creatine kinase (CK) levels and proximal weakness. Raised CK levels up to 

1414 IU/L have been detected in 14 patients carrying the mutations N98S, Q332P 

and E396K.17,37,39 Of these patients, six had an element of proximal weakness in the 

upper or lower limbs or a waddling gait. This gait pattern is also described in 

patients with early-onset disease due to N98S and E396K.14 Myopathic features on 

EMG or muscle biopsy, however, have only been reported in two individuals with the 

E396K mutation and in one family with a myopathic-neurogenic phenotype carrying 

the mutation R421*.39,40  

Screening for additional mutations 

Based on the observation that patients with NEFL mutations may develop CNS 

features, we retrospectively reviewed whole-exome sequencing data from patients 

with pure or complicated hereditary spastic paraplegia (27 cases), early-onset ataxia 

(100 cases), and complex CNS syndromes (75 cases with a variable combination of 

ataxia, spasticity, epilepsy, extrapyramidal features and cognitive involvement), 

searching for rare or novel NEFL variants. Two heterozygous missense NEFL 

variants were identified: Q537R (c.1610A>G, rs377121179) and L336V 

(c.1006C>G, rs551896980). Both variants are present in population databases 

(minor allele frequency of 0.03% and 0.02%, respectively, in the EXaC dataset) and 

predicted to be tolerated or benign by SIFT and PolyPhen2. No other rare variants in 

NEFL were found. 

DISCUSSION 



In this study, we have reported five new cases of NEFL-related CMT and performed 

an analysis of the entire genetic and clinical spectrum of the disease based on data 

from the literature. 

We observed that NEFL mutations are clustered in terms of frequency and location 

in six regions of the NFL protein, predominantly in the initial segment of the head 

domain, the junction between the head and rod domains and the end portion of the 

rod domain. The pathogenic relevance of these three regions is also supported by in 

vitro and animal studies. Substitution of amino acids P8 and P22 of NFL disrupts its 

ability to self-assemble into a filamentous network,49-52 affects the axonal transport 

of neurofilaments and mitochondria51,53,54 and impairs motor neuron viability in 

vitro.55 Transient transfection studies also indicate that T21Afs*83, E90K and N98S 

result in NFL assembly defects.12,50 In addition, mice models of the mutations N98S 

and E396K, located at the two ends of the rod domain, display an abnormal hindlimb 

posture together with muscle atrophy and reduced MNCV in the hNFLE396K mice and 

tremor in the NeflN98S/+ mice.56,57 

Mutations affecting three other regions of NFL (coil 2A, mid portion of coil 2B and tail 

subdomain A) were less common. Six mutations involved the mid region of coil 2B, 

including Q332P, which has been detected in two families and causes similar 

defects in neurofilament assembly and transport as P8R in vitro.49,51,53 For four 

mutations located in this region (L333P, Q334P, L336P and L311P reported in this 

study), however, there was no co-segregation or functional data available. Three 

mutations were located in the tail subdomain A but co-segregation data was not 

reported for the family with CMT and R421* or for F439I, which has a minor allele 

frequency of 0.01%. Therefore, further research is needed to determine if these 

regions of NFL are mutational hotspots. 



NEFL-related CMT presented with a broad clinical and neurophysiological 

phenotype. The mode of transmission was usually autosomal dominant although 

40% of kindreds in our study were classified as sporadic or isolated cases and de 

novo mutations were confirmed in eight of them. Disease onset varied between the 

first and sixth decades of life, with 13% of patients having an early-onset 

presentation (≤3 years) often associated with delayed walking or motor milestones. 

Neurophysiologically, NEFL-related CMT was reported as axonal, demyelinating or 

mixed/intermediate in 40%, 31% and 29% of kindreds, respectively; descriptions 

were not uniform across the literature, but our analysis of published data also 

suggests that neuropathies with MNCV in the demyelinating or intermediate ranges 

are overall more frequent than those with upper limb MNCV >38 m/s. Although the 

reduced velocities may well be mainly explained by preferential loss of large-

myelinated fibres confirmed in 21 sural nerve biopsies, additional features 

suggestive of demyelination and remyelination (onion bulbs and/or thin myelin 

sheaths) were observed in 67% of them. 

Establishing definite genotype-phenotype correlations in patients with NEFL-related 

neuropathies is difficult given the significant number of private mutations and low 

prevalence of the disease. Pyramidal tract signs might be preferentially associated 

with mutations located towards the end of the NFL protein (end of rod domain and 

tail subdomain A) but this should be confirmed in future studies. Ataxia was 

described in association with the four common mutations (P8R, P22S, N98S and 

E396K) and raised CK levels was more frequently described in association with the 

mutation E396K. 

We identified, however, an important clinical association with the mutations E90K 

and N98S (n = 14). Most patients with these mutations were isolated or sporadic 

(71%), six with confirmed de novo mutations (three from our cohort); presented 

before age 3 (93%) with delayed walking or motor milestones (86%); had all 



reported upper limb MNCV in the demyelinating range (86%); and developed 

additional features such as hearing loss (64%), ataxia with or without nystagmus or 

dysarthria (36%), hypotonia (29%) and less frequently intellectual impairment, 

tongue hemiatrophy, signs of vestibular dysfunction and optic nerve hypoplasia; 

cerebellar atrophy on brain MRI was confirmed in three cases. Patients carrying 

E90K and N98S, therefore, presented with a rather uniform syndrome for which we 

propose the acronym “DECADE” (demyelinating neuropathy based on distal upper 

limb MNCV with cerebellar signs and/or ataxia, deafness and delayed motor 

milestones), which also highlights the early onset of the disease. Although only six 

out of 14 patients conformed to the full syndrome, its recognition may aid in the 

differential diagnosis with other autosomal recessive cerebellar ataxias.18 Of note, 

NFL E90K or N98S mutants share a particular phenotype in vitro, different from that 

observed with substitutions of amino acid P8,50 and NeflN98S/+ mice display an early-

onset phenotype with tremor and pathological changes in the CNS including 

neurofilament aggregates in the spinal cord and cerebellum.56 

Beyond the above genotype-phenotype associations, identification of uncommon 

clinical features such as hearing loss, pyramidal tract signs or ataxia may be useful 

in the differential diagnosis of NEFL-related CMT with other forms of CMT. In our 

cohort of 202 patients with CNS syndromes we found no other potential NEFL 

mutations, which supports that these are unlikely to present with a predominantly 

CNS phenotype. 

We acknowledge this study’s limitations related to the amount, completeness and 

heterogeneity of the data in the literature. Missing data may indeed reflect true 

negative data (i.e., absence of a clinical feature), false negative data due to lack of 

assessment or unreported data. Also, cases with atypical clinical characteristics may 

be overrepresented in the literature because of their particular interest. We believe, 

however, that the results of the present study may be helpful in the evaluation of 



novel NEFL sequence variants and the differential diagnosis with other CMT 

subtypes. Also, our study highlights potential aspects of interest to be evaluated in 

future studies. 
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FIGURE LEGENDS 

Figure 1. Family trees of patients from our series. The number corresponds to 

the patient number in the text and table 1. 

Figure 2. Brain MRI. Cranial sagittal T1-weighted MR images showing mild 

cerebellar and medullary volume loss in patient 1 (P1) but not in patients 2 (P2), 4 

(P4) and 5 (P5). Mild volume loss of cervical spinal cord can also be appreciated in 

patients P1 and P2. 

Figure 3. Morphological appearances of sural nerve biopsies from patients 2 

(A and C) and 4 (B and D). Semi-thin resin preparations stained with toluidine blue 

(A) and methylene blue azure–basic fuchsin (B) show transverse sections of nerve 

fascicles in both of which there iswith severe widespread loss of large myelinated 

fibres (yellow arrows indicate occasional remaining large fibres). In both patients the 

small myelinated fibres are better preserved and several regeneration clusters are 

evident in case 2 (B, green arrow). Ultrastructural examination of the biopsy from the 

first patient (C) shows a thinly myelinated fibre with thin myelin sheath (red arrow) 

surrounded by several layers of Schwann cell profiles (blue arrow) closely 

resembling anconsistent with an onion bulb, while electron microscopy in the other 

patient (D) confirms marked reduction of large myelinated fibres accompanied by 

endoneural fibrosis but shows no onion bulb formations. Scale bar: 30μm in A and 

B; 3μm in C and D. 

Figure 4. Localization of reported NEFL mutations in the neurofilament light 

polypeptide. The size of the NEFL gene (cDNA; top line) and neurofilament light 

polypeptide (figure and bottom line) correspond to the number of bases and amino 

acids involved; numbers in the top line indicate base and numbers in the bottom line 

indicate amino acid position. Light blue = linker regions of the rod domain. Light grey 

= mutations for which there was no clinical information available. AD = autosomal 



dominant; AR = autosomal recessive; C1A, C1B, C2A and C2B = coil 1A, 1B, 2A 

and 2C subdomains; SA and SB = subdomains A and B. 


