797 research outputs found
Topology of amorphous tetrahedral semiconductors on intermediate lengthscales
Using the recently-proposed ``activation-relaxation technique'' for
optimizing complex structures, we develop a structural model appropriate to
a-GaAs which is almost free of odd-membered rings, i.e., wrong bonds, and
possesses an almost perfect coordination of four. The model is found to be
superior to structures obtained from much more computer-intensive tight-binding
or quantum molecular-dynamics simulations. For the elemental system a-Si, where
wrong bonds do not exist, the cost in elastic energy for removing odd-membered
rings is such that the traditional continuous-random network is appropriate.
Our study thus provides, for the first time, direct information on the nature
of intermediate-range topology in amorphous tetrahedral semiconductors.Comment: 4 pages, Latex and 2 postscript figure
Three-Dimensional FDTD Simulation of Biomaterial Exposure to Electromagnetic Nanopulses
Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or
nanopulses, have been recently approved by the Federal Communications
Commission for a number of various applications. They are also being explored
for applications in biotechnology and medicine. The simulation of the
propagation of a nanopulse through biological matter, previously performed
using a two-dimensional finite difference-time domain method (FDTD), has been
extended here into a full three-dimensional computation. To account for the UWB
frequency range, a geometrical resolution of the exposed sample was ,
and the dielectric properties of biological matter were accurately described in
terms of the Debye model. The results obtained from three-dimensional
computation support the previously obtained results: the electromagnetic field
inside a biological tissue depends on the incident pulse rise time and width,
with increased importance of the rise time as the conductivity increases; no
thermal effects are possible for the low pulse repetition rates, supported by
recent experiments. New results show that the dielectric sample exposed to
nanopulses behaves as a dielectric resonator. For a sample in a cuvette, we
obtained the dominant resonant frequency and the -factor of the resonator.Comment: 15 pages, 8 figure
Structural, electronic, and dynamical properties of amorphous gallium arsenide: a comparison between two topological models
We present a detailed study of the effect of local chemical ordering on the
structural, electronic, and dynamical properties of amorphous gallium arsenide.
Using the recently-proposed ``activation-relaxation technique'' and empirical
potentials, we have constructed two 216-atom tetrahedral continuous random
networks with different topological properties, which were further relaxed
using tight-binding molecular dynamics. The first network corresponds to the
traditional, amorphous, Polk-type, network, randomly decorated with Ga and As
atoms. The second is an amorphous structure with a minimum of wrong (homopolar)
bonds, and therefore a minimum of odd-membered atomic rings, and thus
corresponds to the Connell-Temkin model. By comparing the structural,
electronic, and dynamical properties of these two models, we show that the
Connell-Temkin network is energetically favored over Polk, but that most
properties are little affected by the differences in topology. We conclude that
most indirect experimental evidence for the presence (or absence) of wrong
bonds is much weaker than previously believed and that only direct structural
measurements, i.e., of such quantities as partial radial distribution
functions, can provide quantitative information on these defects in a-GaAs.Comment: 10 pages, 7 ps figures with eps
Towards device-size atomistic models of amorphous silicon
The atomic structure of amorphous materials is believed to be well described
by the continuous random network model. We present an algorithm for the
generation of large, high-quality continuous random networks. The algorithm is
a variation of the "sillium" approach introduced by Wooten, Winer, and Weaire.
By employing local relaxation techniques, local atomic rearrangements can be
tried that scale almost independently of system size. This scaling property of
the algorithm paves the way for the generation of realistic device-size atomic
networks.Comment: 7 pages, 3 figure
Investigating Unique Environmental Contributions to the Neural Representation of Written Words: A Monozygotic Twin Study
The visual word form area (VWFA) is a region of left inferior occipitotemporal cortex that is critically involved in visual word recognition. Previous studies have investigated whether and how experience shapes the functional characteristics of VWFA by comparing neural response magnitude in response to words and nonwords. Conflicting results have been obtained, however, perhaps because response magnitude can be influenced by other factors such as attention. In this study, we measured neural activity in monozygotic twins, using functional magnetic resonance imaging. This allowed us to quantify differences in unique environmental contributions to neural activation evoked by words, pseudowords, consonant strings, and false fonts in the VWFA and striate cortex. The results demonstrate significantly greater effects of unique environment in the word and pseudoword conditions compared to the consonant string and false font conditions both in VWFA and in left striate cortex. These findings provide direct evidence for environmental contributions to the neural architecture for reading, and suggest that learning phonology and/or orthographic patterns plays the biggest role in shaping that architecture
Modern Electronic Techniques Applied to Physics and Engineering
Contains reports on two research projects
Use of ultrasound by emergency medical services: a review
Prehospital ultrasound has been deployed in certain areas of the USA and Europe. Physicians, emergency medical technicians, and flight nurses have utilized a variety of medical and trauma ultrasound assessments to impact patient care in the field. The goal of this review is to summarize the literature on emergency medical services (EMS) use of ultrasound to more clearly define the potential utility of this technology for prehospital providers
Use of ultrasound by emergency medical services: a review
Prehospital ultrasound has been deployed in certain areas of the USA and Europe. Physicians, emergency medical technicians, and flight nurses have utilized a variety of medical and trauma ultrasound assessments to impact patient care in the field. The goal of this review is to summarize the literature on emergency medical services (EMS) use of ultrasound to more clearly define the potential utility of this technology for prehospital providers
- …