7 research outputs found
Recommended from our members
The Dampening Effect of Iceberg Orders on Small Traders' Welfare
Iceberg orders, which allow traders to hide a portion of their order size, have become prevalent in many electronic limit order markets. This paper investigates, via a real options analysis, whether small traders, who have no use for submitting iceberg orders, are better off submitting their orders to fully transparent markets which have low depth, or to more liquid markets which do permit the placement of iceberg orders by large traders. Surprisingly, we find that in the context of our model, small traders are better off submitting to fully transparent markets in spite of them being less liquid
Colocalization Analysis of Cytoplasmic Actin Isoforms Distribution in Endothelial Cells
Actin cytoskeleton is an essential component of living cells and plays a decisive role in many cellular processes. In mammals, β- and γ-actin are cytoplasmic actin isoforms in non-muscle cells. Despite minor differences in the amino acid sequence, β- and γ-actin localize in different cell structures and perform different functions. While cytoplasmic β-actin is involved in many intracellular processes including cell contraction, γ-actin is responsible for cell mobility and promotes tumor transformation. Numerous studies demonstrate that β- and γ-actin are spatially separated in the cytoplasm of fibroblasts and epithelial cells; this separation is functionally determined. The spatial location of β/γ-actin in endothelial cells is still a subject for discussion. Using super-resolution microscopy, we investigated the β/γ-actin colocalization in endotheliocytes and showed that the β/γ-actin colocalization degree varies widely between different parts of the marginal regions and near the cell nucleus. In the basal cytoplasm, β-actin predominates, while the ratio of isoforms evens out as it moves to the apical cytoplasm. Thus, our colocalization analysis suggests that β- and γ-actin are segregated in the endotheliocyte cytoplasm. The segregation is greatly enhanced during cell lamella activation in the nocodazole-induced endothelial barrier dysfunction, reflecting a different functional role of cytoplasmic actin isoforms in endothelial cells
Immunosuppressive Phenotype of Esophagus Tumors Stroma
Background. Tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs) contribute significantly to the development of immunosuppressive properties of a tumor. In this study, we performed immunohistochemical analysis of immune cells of esophageal tumors stroma. Methods. Paraffin-embedded tissue specimens from 48 esophageal squamous cell carcinoma (ESCC) patients were retrospectively collected for immunohistochemical analysis of stromal cells. For staining of macrophages, CD68, CD163, CD206, PU.1, and iNOS were used. For T cell detection, CD8, CD3, and FOXP3 were used. Also, we performed staining for PD-L1 that can be expressed on TAMs and tumor cells. Clinicopathological and survival data were collected and analyzed using the χ2 and Fisher exact tests, Kaplan–Meier curves, and the log-rank test. The correlation analysis was performed with Spearman’s rank correlation coefficient. Results. We found that FOXP3 expression was associated with age (p=0.042) and iNOS expression was associated with the disease stage (p=0.044). In addition, FOXP3 and CD163 appeared to be markers of good prognosis (HR=0.4420, p=0.0325, and HR=0.4447, p=0.0456, respectively). Significant association between PU.1+ and CD68+ macrophages (r=0.833; p≤0.001) and between PU.1+ and CD163+ macrophages (r=0.500; p≤0.001) was established; positive association between PU.1 and CD206 expression was also observed (r=0.250; p=0.043). Conclusions. Large amounts of CD163+ macrophages and FOXP3+ Т cells appear to be markers of good prognosis of ESCC. The number of PU.1+ macrophages strongly correlates with the number of CD68+ macrophages; therefore, usage of PU.1 as a potential macrophage marker can be recommended for esophageal tumors
CHID1 Is a Novel Prognostic Marker of Non-Small Cell Lung Cancer
There is an urgent need for identification of new prognostic markers and therapeutic targets for non-small cell lung cancer (NSCLC). In this study, we evaluated immune cells markers in 100 NSCLC specimens. Immunohistochemical analysis revealed no prognostic value for the markers studied, except CD163 and CD206. At the same time, macrophage markers iNOS and CHID1 were found to be expressed in tumor cells and associated with prognosis. We showed that high iNOS expression is a marker of favorable prognosis for squamous cell lung carcinoma (SCC), and NSCLC in general. Similarly, high CHID1 expression is a marker of good prognosis in adenocarcinoma and in NSCLC in general. Analysis of prognostic significance of a high CHID1/iNOS expression combination showed favorable prognosis with 20 months overall survival of patients from the low CHID1/iNOS expression group. For the first time, we demonstrated that CHID1 can be expressed by NSCLC cells and its high expression is a marker of good prognosis for adenocarcinoma and NSCLC in general. At the same time, high expression of iNOS in tumor cells is a marker of good prognosis in SCC. When used in combination, CHID1 and iNOS show a very good prognostic capacity for NSCLC. We suggest that in the case of lung cancer, tumor-associated macrophages are likely ineffective as a therapeutic target. At the same time, macrophage markers expressed by tumor cells may be considered as targets for anti-tumor therapy or, as in the case of CHID1, as potential anti-tumor agents
Topological Insulator Films for Terahertz Photonics
We discuss experimental and theoretical studies of the generation of the third terahertz (THz) frequency harmonic in thin films of Bi2Se3 and Bi2-xSbxTe3-ySey (BSTS) topological insulators (TIs) and the generation of THz radiation in photoconductive antennas based on the TI films. The experimental results, supported by the developed kinetic theory of third harmonic generation, show that the frequency conversion in TIs is highly efficient because of the linear energy spectrum of the surface carriers and fast energy dissipation. In particular, the dependence of the third harmonic field on the pump field remains cubic up to the pump fields of 100 kV/cm. The generation of THz radiation in TI-based antennas is obtained and described for the pump, with the energy of photons corresponding to the electron transitions to higher conduction bands. Our findings open up possibilities for advancing TI-based films into THz photonics as efficient THz wave generators and frequency converters
Macrophage Phenotype in Combination with Tumor Microbiome Composition Predicts RCC Patients’ Survival: A Pilot Study
The identification of new prognostic markers of renal cell carcinoma (RCC) is an urgent problem in oncourology. To investigate the potential prognostic significance of tumor microbiome and stromal inflammatory markers, we studied a cohort of 66 patients with RCC (23 clear cell RCC, 19 papillary RCC and 24 chromophobe RCC). The microbiome was analyzed in tumor and normal tissue by 16S rRNA amplicon sequencing. Characterization of the tumor stroma was performed using immunohistochemistry. A significant difference in alpha diversity was demonstrated between normal kidney tissue and all types of RCC. Further, we demonstrated that the bacterial burden was higher in adjacent normal tissue than in a tumor. For the first time, we demonstrated a significant correlation between bacterial burden and the content of PU.1+ macrophages and CD66b+ neutrophils in kidney tumors. Tumors with high content of PU.1+ cells and CD66b+ cells in the stroma were characterized by a lower bacterial burden. In the tumors with high bacterial burden, the number of PU.1+ cells and CD66b+ was associated with a poor prognosis. The identified associations indicate the great prognostic potential of a combined tumor microbiome and stromal cell analysis
Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing
The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO2), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO2 initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core–shell fiber composite PVA-PEG-SiO2-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer–Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core–shell composite provides sustainable antibacterial activity against Staphylococcus aureus