300 research outputs found

    Hepatic Regeneration

    Get PDF

    A dog model for acetaminophen-induced fulminant hepatic failure.

    Get PDF
    The development of a large animal model of fulminant hepatic failure produced with acetaminophen that should be useful in the development and evaluation of potential medical therapies for the important clinical problem of fulminant hepatic failure is described. Acetaminophen in dimethyl sulfoxide (600 mg/ml) given as three subcutaneous injections, with the first dose (750 mg/kg body wt) being given at noon, the second dose (200 mg/kg body wt) being given 9 h later, and the third dose (200 mg/kg body wt) being given 24 h after the initial dose consistently produces fulminant hepatic failure in dogs. The dimethyl sulfoxide vehicle, injected intramuscularly, does not influence either animal survival or hepatic function in control-treated dogs. No deaths occur within the first 36 h. By 72 h after initial drug administration, the mortality is 90%. Histopathological and biochemical investigations demonstrate a high degree of hepatocellular necrosis in nonsurviving animals without appreciable damage to the kidneys, lungs, or heart. The drug schedule and preparation outlined avoids the administration of large volumes of vehicle and results in prolonged high levels of acetaminophen in the blood sufficient to induce severe hepatic injury. Ranitidine (120 mg/kg body wt i.m.) given 30 min before each acetaminophen dose significantly reduces the mortality and hepatic necrosis produced using this model. This model satisfies all criteria established by Miller et al. for the production of a suitable large animal model of fulminant acute hepatic failure

    A dog model for acetaminophen-induced fulminant hepatic failure.

    Get PDF
    The development of a large animal model of fulminant hepatic failure produced with acetaminophen that should be useful in the development and evaluation of potential medical therapies for the important clinical problem of fulminant hepatic failure is described. Acetaminophen in dimethyl sulfoxide (600 mg/ml) given as three subcutaneous injections, with the first dose (750 mg/kg body wt) being given at noon, the second dose (200 mg/kg body wt) being given 9 h later, and the third dose (200 mg/kg body wt) being given 24 h after the initial dose consistently produces fulminant hepatic failure in dogs. The dimethyl sulfoxide vehicle, injected intramuscularly, does not influence either animal survival or hepatic function in control-treated dogs. No deaths occur within the first 36 h. By 72 h after initial drug administration, the mortality is 90%. Histopathological and biochemical investigations demonstrate a high degree of hepatocellular necrosis in nonsurviving animals without appreciable damage to the kidneys, lungs, or heart. The drug schedule and preparation outlined avoids the administration of large volumes of vehicle and results in prolonged high levels of acetaminophen in the blood sufficient to induce severe hepatic injury. Ranitidine (120 mg/kg body wt i.m.) given 30 min before each acetaminophen dose significantly reduces the mortality and hepatic necrosis produced using this model. This model satisfies all criteria established by Miller et al. for the production of a suitable large animal model of fulminant acute hepatic failure

    Small‐for‐size liver transplanted into larger recipient: A model of hepatic regeneration

    Get PDF
    Orthotopic liver transplantation was performed in 60 recipient rats weighing 200 to 250 gm. Sixty rats of the same strain were used as liver donors, 30 weighing 100 to 140 gm (small for size) and the other 30 weighing 200 to 250 gm (same size). After 1, 2, 3, 4, 7 and 14 days (n = 5 each) DNA synthesis, nuclear thymidine labeling and mitoses were increased in both the small‐for‐size and same‐size groups, but significantly more in the former. These changes were maximal after 48 to 72 hr, similar to but later than the well‐known regeneration response after partial hepatectomy, which peaks at 24 hr in rats. Indirect indexes of regeneration of the transplanted livers also were measured: plasma or serum ornithine decarboxylase; insulin and glucagon serum levels; estradiol and testosterone serum levels (and their nuclear and cytosolic receptors); and transforming growth factor‐ß, c‐Ha‐ras and c‐jun mRNA expressions. With the small‐for‐size transplantation, these followed the same delayed pattern as the direct regeneration parameters. The small livers gradually increased in size over the course of 1 to 2 wk and achieved a volume equal to that of the liver originally present in the recipient. In contrast, no significant liver weight gain occurred in the transplanted livers from same‐size donors despite the evidence of regeneration by direct indexes, but not by most of the surrogate parameters, including ornithine decarboxylase. (Hepatology 1993;19:210–216). Copyright © 1994 American Association for the Study of Liver Disease

    Cell proliferation and oncogene expression after bile duct ligation in the rat: Evidence of a specific growth effect on bile duct cells

    Get PDF
    The proliferative response of the rat liver was measured after temporary or permanent total biliary obstruction (BDO) and in different regions after selective ligation of the lobar ducts draining the right 60% of the hepatic mass. The results were compared with those after 70% partial hepatectomy (PH). Cell proliferation was assessed globally by measuring DNA synthesis and stratified to the separate cell populations with cytostaining techniques that allowed distinction of hepatocytes, duct cells, and nonparenchymal cells (NPCs). In selected experimental groups, gene expression was determined of transforming growth factor-β1 (TGFβ-1), prothrombin, c-erb-B2, transforming growth factor alpha (TGFα), human Cyclophilin (CyP), and 28S ribosomal RNA. The stimulation of a proliferative response to total BDO required obstruction for longer than 24 hours, but after this deligation did not switch off regeneration. In the first week after permanent BDO, there was progressive infiltration of NPCs, fibrous linkage of some portal areas, and a crescendo of DNA synthesis that was obvious at 24 hours, maximal at 48 hours, and back nearly to baseline at 6 days. At the 2-day mark, the bile duct cells had a 17-fold increase in proliferation, accompanied by a threefold to fourfold increase in hepatocyte renewal. Little or no increase in expression of TGFα or the hepatocyte-specific prothrombin gene was detectable in the first 48 hours, whereas levels of the oncogene c-erb-B2 that is associated with cholangiocarcinoma were expressed from 48 to 96 hours. Livers subjected to regional BDO with or without immunosuppressive treatment with FK 506 and cyclosporine had an inflammatory reaction only on the side with ligated ducts. DNA synthesis increased in both the obstructed and freely draining lobes to approximately half the level that occurred after total BDO. The proliferation of the obstructed side was similar to the mixed duct cell/hepatocyte response after total BDO, but this almost exclusively involved duct cells on the freely draining side. In contrast to the findings after BDO, livers after PH regenerated maximally at 24 hours rather than 48 hours, had a predominantly noninflammatory hepatocyte as opposed to duct cell response, and had marked expression of the prothrombin and TGFα genes but only weakly and late of c-erb-B2 messenger RNA. The results show that the liver responds as a whole and in a biologically intelligent way to the nature of the injury inflicted on any part of it. It further implies the presence of humoral communications and control networks that assure organ homeostasis and relate this to total body homeostasis. © 1995

    Different response to epidermal growth factor of hepatocytes in cultures isolated from male or female rat liver. Inhibitor effect of estrogen on binding and mitogenic effect of epidermal growth factor

    Get PDF
    Deoxyribonucleic acid (DNA) synthesis in hepatocytes isolated from the livers of male and female rats has been compared in monolayer culture. Plating efficiency, DNA and protein content, viability, and morphologic appearance were the same in cultures prepared with hepatocytes isolated from male or female rats. Epidermal growth factor (EGF)-induced DNA synthesis was significantly higher in hepatocytes from male rats than in hepatocytes from female rats. This was the case whether hepatocytes were isolated from normal or partially hepatectomized male or female rats. Hepatocytes isolated from regenerating liver synthesize more DNA than those isolated from normal liver in response to EGF. This increased response to EGF in hepatocytes derived from regenerating liver was relatively the same for male- and female-derived hepatocytes, but the magnitude of the response was considerably higher in male-derived hepatocytes. In contrast, in vivo DNA synthesis in the liver remnant after partial hepatectomy was similar in male and female rats if measured 24 h after the operation. A comparison of EGF binding to male- and female-derived hepatocytes maintained in primary culture indicated a lower number of high-affinity receptors for EGF in the female hepatocytes. The addition of estrogen to primary cultures of hepatocytes isolated from male rats inhibited EGF binding as well as EGF-induced DNA synthesis. Our studies show significant differences in DNA synthesis in response to EGF when male and female hepatocytes are compared in primary culture. The regenerative response after partial hepatectomy, on the other hand, was the same in male and female rats. Thus, our studies indicate that the sex of the donor rat is important when hepatocytes in culture are used for a variety of studies, such as hepatocyte metabolism, induction and control of DNA synthesis, and hepatocarcinogenesis. In addition, our results indicate that caution is advised when inferences are made from in vitro findings for in vivo conditions. © 1987
    corecore