263 research outputs found

    Virulence Genes of Pathogenic Escherichia coli in Wild Red Foxes (Vulpes vulpes)

    Get PDF
    Different pathotypes of Escherichia coli can cause severe diseases in animals and humans. Wildlife may contribute to the circulation of pathogenic pathotypes, including enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli (STEC), and enterohemorrhagic E. coli (EHEC). This study analyzed 109 DNA samples previously extracted from fecal specimens collected from red foxes (Vulpes vulpes) to detect E. coli virulence genes eaeA, hlyA, stx1, and stx2, that characterize the EPEC, STEC, and EHEC strains. Thirty-one (28.4%) samples were positive for at least one investigated virulence gene: eaeA gene was detected in 21 (19.2%) samples, hlyA in 10 (9.1%), stx1 in 6 (5.5%), and stx2 in 4 (3.6%). Nine DNA samples resulted positive for two or three virulence genes: five (4.6%) samples were positive for eaeA and hlyA genes, two (1.8%) for eaeA and stx1, one (0.9%) for hlyA and stx1, one (0.9%) for eaeA, hlyA and stx2. Red foxes seem to be involved in the epidemiology of these infections and their role could be relevant because they may be source of pathogenic E. coli for other wild animals, as well as domestic animals and humans

    Recent Advances in the Study of Marine Microbial Biofilm: From the Involvement of Quorum Sensing in Its Production up to Biotechnological Application of the Polysaccharide Fractions

    Get PDF
    The present review will explore the most relevant findings on marine microbial biofilm, with particular attention towards its polysaccharide fraction, namely exopolysaccharide (EPS). EPSs of microbial origin are ubiquitous in nature, possess unique properties and can be isolated from the bacteria living in a variety of habitats, including fresh water or marine environments, extreme environments or different soil ecosystems. These biopolymers have many application in the field of biotechnology. Several studies showed that the biofilm formation is closely related to quorum sensing (QS) systems, which is a mechanism relying on the production of small molecules defined as "autoinducers" that bacteria release in the surrounding environment where they accumulate. In this review, the involvement of microbial chemical communication, by QS mechanism, in the formation of marine biofilm will also be discussed

    Serological survey on some pathogens in wild brown hares (Lepus europaeus) in Central Italy

    Get PDF
    Objective To determine the exposure of wild brown hares [Lepus europaeus (L. europaeus), pallas] to Anaplasma phagocytophilum (A. phagocytophilum), Borrelia burgdorferi (B. burgdorferi) sensu lato, Encephalitozoon cuniculi (E. cuniculi), Leishmania sp., Neospora caninum (N. caninum) and Toxoplasma gondii (T. gondii). Methods Two hundred twenty-two blood serum samples of wild brown hares captured in protected areas of the province of Pisa (Central Italy) were tested to detect antibodies against the reported pathogens. Results Thirty one (14.0%) animals resulted positive for at least one tested agent, with antibody titres ranging from 1:20 to 1:320. In particular, 13 (5.8%) samples were positive to B. burgdorferi s.l., 11 (4.9%) to N. caninum, 3 (1.3%) to T. gondii, 2 (0.9%) to A. phagocytophilum and 2 (0.9%) to Leishmania sp. No samples scored positive to E. cuniculi. Four animals (14.8%) resulted coinfected with 2 different pathogens. Conclusion The obtained results showed that B. burgdorferi s.l. N. caninum, T. gondii, A. phagocytophilum and Leishmania sp. circulate in wild brown hares in Central Italy, suggesting a possible role of L. europaeus as reservoir of these pathogens. The obtained results showed that autochthonous wild brown hares living in Central Italy have been exposed to several pathogens circulating in this area, suggesting a possible role of L. europaeus as reservoir

    STAT3 can serve as a hit in the process of malignant transformation of primary cells

    Get PDF
    The transcription factor signal transducer and activator of transcription 3 (STAT3) acts downstream of many pro-oncogenic signals, including cytokines, growth factors and oncogenes, and is accordingly constitutively active in a wide variety of tumors that often become addicted to it. Moreover, STAT3 is a key player in mediating inflammation-driven tumorigenesis, where its aberrant continuous activation is typically triggered by local or systemic production of the pro-inflammatory cytokine IL-6. We recently showed that mouse embryonic fibroblasts (MEFs) derived from STAT3C k/in mice, which express physiological levels of the constitutively active mutant STAT3C, display features of transformed cells such as increased proliferation, resistance to apoptosis and senescence, and aerobic glycolysis. Here, we show that pre-existing constitutively active STAT3 is sufficient to prime primary MEFs for malignant transformation upon spontaneous immortalization. Transformation is strictly STAT3-dependent and correlates with high resistance to apoptosis and enhanced expression of anti-apoptotic/pro-survival genes. Additionally, hypoxia inducible factor (HIF)-1α level is elevated by twofold and contributes to STAT3 oncogenic activity by supporting high rates of aerobic glycolysis. Thus, constitutively active STAT3, an accepted essential factor for tumor growth/progression, can also act as a first hit in multistep carcinogenesis; this ability to predispose cells to malignant transformation may be particularly relevant in the pro-oncogenic niche represented by chronically inflamed tissues

    Toward the development of direct emission yellow fiber lasers for biomedical applications

    Get PDF
    The paper presents the design and preliminary experimental validation of a fiber laser with direct emission in the yellow. The active material is a Dy-doped custom-made phosphate fiber, which is pumped by high-power blue diode lasers emitting at 450 nm. A suitable model has been developed to optimize the laser behavior and validated with a low-power version of the laser cavity with femtosecond written Bragg grating mirrors

    Variability of Muscular Recruitment in Hemiplegic Walking Assessed by EMG Analysis

    Get PDF
    Adaptive variability during walking is typical of child motor development. It has been reported that neurological disorders could affect this physiological phenomenon. The present work is designed to assess the adaptive variability of muscular recruitment during hemiplegic walking and to detect possible changes compared to control populations. In the attempt of limiting the complexity of computational procedure, the easy-to-measure coecient of variation (CV) index is adopted to assess surface electromyography (sEMG) variability. The target population includes 34 Winters’ type I and II hemiplegic children (H-group). Two further healthy populations, 34 age-matched children (C-group) and 34 young adults (A-group), are involved as controls. Results show a significant decrease (p < 0.05) of mean CV for gastrocnemius lateralis (GL) in H-group compared to both C-group (15% reduction) and A-group (35% reduction). Reductions of mean CV are detected also for tibialis anterior (TA) in H-group compared to C-group (7% reduction, p > 0.05) and A-group (15% reduction, p < 0.05). Lower CVs indicate a decreased intra-subject variability of ankle-muscle activity compared to controls. Novel contribution of the study is twofold: (1) To propose a CV-based approach for an easy-to-compute assessment of sEMG variability in hemiplegic children, useful in different experimental environments and different clinical purposes; (2) to provide a quantitative assessment of the reduction of intra-subject variability of ankle-muscle activity in mild-hemiplegic children compared to controls (children and adults), suggesting that hemiplegic children present a limited capability of adapting their muscle recruitment to the different stimuli met during walking task. This finding could be very useful in deepening the knowledge of this neurological disorder

    Parametric Assessment to Evaluate and Compare the Carbon Footprint of Diverse Manufacturing Processes for Building Complex Surfaces

    Get PDF
    At present, building design is faced with a need to properly manage complex geometries and surfaces. This fact is not only driven by the increased demand for visually stunning spaces but also stems from the rise of new design paradigms, such as “user-centred design”, that include bespoke optimization approaches. Nevertheless, the escalating adoption of customized components and one-off solutions raises valid concerns regarding the optimal use of energy and resources in this production paradigm. This study focuses on the Life Cycle Assessment of a novel Cement–Textile Composite (CTC) patented material. It combines a synthetic reinforcing textile with a customized concrete matrix, to generate rigid elements that are able to statically preserve complex spatial arrangements, particularly double-curvature surfaces. Moreover, the CTC offers a low-volume cost-effective alternative for custom-made cladding applications. The study performed a comparative carbon footprint assessment of the CTC production process in contrast to other technologies, such as CNC milling and 3D printing. To facilitate meaningful comparisons among diverse construction alternatives and to derive generalized data capable of characterizing their overall capacity, independent of specific production configurations, the present study implemented a generalized parametric shape of reference defined as a bounding box (BBOX), which encloses the volume of the target shape. Comparing different production technologies of the same shape with the same BBOX results in a significant carbon saving, up to 9/10th of the carbon footprint, when the CTC technology is adopted. The study therefore highlights the potential environmental advantages of CTC in the fields of architectural design and building engineering

    Improving Children's Logical and Mathematical Performance via a Pragmatic Approach

    Get PDF
    Deductive and logical reasoning is a crucial topic for cognitive psychology and has largely been investigated in adults, concluding that humans are apparently irrational. Yet, from a pragmatic approach, the logical level of meaning is only one of possible communicative interpretations, and the least likely to be assigned if the intent of the task is not adequately transmitted. Indeed, new formulations of the mathematical tasks (syllogisms, selection task, class inclusion task, problem solving) of greater relevance to the problem and to its aim, greatly improved adults' logical performance. The current study tested whether pragmatic manipulations of task instructions influenced in a similar way children's performance in deductive and logical tasks (Experiment 1) and in insight problems (Experiment 2). We found that, when task instructions were in accordance with the conversational rules of communication, 10-year-old children substantially improved their performance. We suggest that language use imposes constraints in terms of informativeness and relevance which are crucial in teaching logic and mathematics

    Autism and neurodevelopmental disorders: the Sars-Cov-2 pandemic implications

    Get PDF
    The Special Issue (SI) “Autism and Neurodevelopmental Disorders: The SARS-CoV-2 Pandemic Implications” is an interesting project that adopted a scientific point of view with important implications in clinical and practical fields [...
    • …
    corecore