22 research outputs found

    Cytotoxic T lymphocyte-Associated Antigen +49G Variant Confers Risk for Anti-CCP- and Rheumatoid Factor-Positive Type of Rheumatoid Arthritis Only in Combination with CT60∗G Allele

    Get PDF
    Controversial observations have been published on the association of the cytotoxic T lymphocyte associated antigen gene's variants with rheumatoid arthritis (RA). After genotyping 428 patients and 230 matched controls, the prevalence of the CT60∗G allele was more frequent in RF- and/or anti-CCP-seropositive RApatients, compared to the healthy controls (P < .001). Regression analysis revealed that the CT60∗G allele is a possible predisposing factor for RA in these subgroups. No accumulation of the +49∗G allele was found among patients, and this variant was not found to correlate with RA. Assaying the possible genotype variations, the +49∗G-CT60∗G allelic combination was accumulated in seropositive RA-subtypes, and was associated with the risk of RA (OR = 1.73, P = .001 for the whole RA-population). Although the +49∗G allele did not mean a predisposition to RA alone, in combination with CT60∗G it, also conferred risk, suggesting that the +49A/G variant is associated with the risk of RA only in certain haplotypes

    Disrupted glucose homeostasis and skeletal muscle-specific glucose uptake in an exocyst knockout mouse model

    Get PDF
    Skeletal muscle is responsible for the majority of glucose disposal following meals, and this is achieved by insulin-mediated trafficking of glucose transporter type 4 (GLUT4) to the cell membrane. The eight-protein exocyst trafficking complex facilitates targeted docking of membrane-bound vesicles, a process underlying the regulated delivery of fuel transporters. We previously demonstrated the role of exocyst subunit EXOC5 in insulin-stimulated GLUT4 exocytosis and glucose uptake in cultured rat skeletal myoblasts. However, the in vivo role of EXOC5 in skeletal muscle remains unclear. Using mice with inducible, skeletal muscle-specific knockout of exocyst subunit EXOC5 (Exoc5-SMKO), we examined how muscle-specific disruption of the exocyst would affect glucose homeostasis in vivo. We found that both male and female Exoc5-SMKO mice displayed elevated fasting glucose levels. Additionally, male Exoc5-SMKO mice had impaired glucose tolerance and lower serum insulin levels. Using indirect calorimetry, we observed that male Exoc5-SMKO mice have a reduced respiratory exchange ratio during the light period and lower energy expenditure. Using the hyperinsulinemic-euglycemic clamp method, we further showed that insulin-stimulated skeletal muscle glucose uptake is reduced in Exoc5-SMKO males compared to wild-type controls. Overall, our findings indicate that EXOC5 and the exocyst are necessary for insulin-stimulated glucose uptake in skeletal muscle and regulate glucose homeostasis in vivo

    The Exocyst Is Required for CD36 Fatty Acid Translocase Trafficking and Free Fatty Acid Uptake in Skeletal Muscle Cells

    No full text
    In obesity, chronic membrane-localization of CD36 free fatty acid (FFA) translocase, but not other FFA transporters, enhances FFA uptake and intracellular lipid accumulation. This ectopic lipid accumulation promotes insulin resistance by inhibiting insulin-induced GLUT4 glucose transporter trafficking and glucose uptake. GLUT4 and CD36 cell surface delivery is triggered by insulin- and contraction-induced signaling, which share conserved downstream effectors. While we have gathered detailed knowledge on GLUT4 trafficking, the mechanisms regulating CD36 membrane delivery and subsequent FFA uptake in skeletal muscle are not fully understood. The exocyst trafficking complex facilitates the docking of membrane-bound vesicles, a process underlying the controlled surface delivery of fuel transporters. The exocyst regulates insulin-induced glucose uptake via GLUT4 membrane trafficking in adipocytes and skeletal muscle cells and plays a role in lipid uptake in adipocytes. Based on the high degree of conservation of the GLUT4 and CD36 trafficking mechanisms in adipose and skeletal muscle tissue, we hypothesized that the exocyst also contributes to lipid uptake in skeletal muscle and acts through the targeted plasma membrane delivery of CD36 in response to insulin and contraction. Here, we show that the exocyst complex is necessary for insulin- and contraction-induced CD36 membrane trafficking and FFA uptake in muscle cells

    Association of remote monitoring with survival in heart failure patients undergoing cardiac resynchronization therapy: Retrospective observational study

    No full text
    Background: Remote monitoring is an established, guideline-recommended technology with unequivocal clinical benefits; however, its ability to improve survival is contradictory. Objective: The aim of our study was to investigate the effects of remote monitoring on mortality in an optimally treated heart failure patient population undergoing cardiac resynchronization defibrillator therapy (CRT-D) implantation in a large-volume tertiary referral center. Methods: The population of this single-center, retrospective, observational study included 231 consecutive patients receiving CRT-D devices in the Medical Centre of the Hungarian Defence Forces (Budapest, Hungary) from January 2011 to June 2016. Clinical outcomes were compared between patients on remote monitoring and conventional follow-up. Results: The mean follow-up time was 28.4 (SD 18.1) months. Patients on remote monitoring were more likely to have atrial fibrillation, received heart failure management at our dedicated heart failure outpatient clinic more often, and have a slightly lower functional capacity. Crude all-cause mortality of remote-monitored patients was significantly lower compared with patients followed conventionally (hazard ratio [HR] 0.368, 95% CI 0.186-0.727, P=.004). The survival benefit remained statistically significant after adjustment for important baseline parameters (adjusted HR 0.361, 95% CI 0.181-0.722, P=.004). Conclusions: In this single-center, retrospective study of optimally treated heart failure patients undergoing CRT-D implantation, the use of remote monitoring systems was associated with a significantly better survival rate

    CD160: a unique activating NK cell receptor.

    No full text
    International audienceHere we discuss CD160 an essential NK cell activating receptor that remains poorly understood. CD160 receptor exhibits a number of unique structural and functional characteristics that are not common to other killer immunoglobulin-like receptors that recognize major histocompatibility complex (MHC) class I molecules: (1) In addition to humans and mice, the cd160 gene is conserved in several other mammal species; (2) cd160 is located outside the NK gene complex and the Leukocyte Receptor Complex in humans; (3) CD160 expression is associated to the CD56(dim) CD16+ cytotoxic NK cell phenotype; (4) both human and mouse CD160 recognize MHC class Ia and Ib molecules; (5) unlike the other MHC class I-dependent activating NK receptors, CD160 is a glycosylphosphatidylinositol-anchored molecule with a single immunoglobulin-like domain, and does not bear immunoreceptor tyrosine-based activation motifs. Consequently, CD160 cannot signal by itself, requiring the recruitment of adaptor proteins. CD160 recruits phosphoinositide-3 kinase to trigger cytotoxicity and cytokine secretion; (6) specific engagement of NK CD160 receptor expressed by circulating NK cells produces proinflammatory cytokines IFN-Îł, TNF-α, and, most notably, IL-6 and IL-8 as well as MIP1-ÎČ chemokine. The level of CD160-mediated IFN-Îł production is always higher than the one observed after engagement of the CD16 receptor

    Urothelial Defects from Targeted Inactivation of Exocyst Sec10 in Mice Cause Ureteropelvic Junction Obstructions.

    No full text
    Most cases of congenital obstructive nephropathy are the result of ureteropelvic junction obstructions, and despite their high prevalence, we have a poor understanding of their etiology and scarcity of genetic models. The eight-protein exocyst complex regulates polarized exocytosis of intracellular vesicles in a large variety of cell types. Here we report generation of a conditional knockout mouse for Sec10, a central component of the exocyst, which is the first conditional allele for any exocyst gene. Inactivation of Sec10 in ureteric bud-derived cells using Ksp1.3-Cre mice resulted in severe bilateral hydronephrosis and complete anuria in newborns, with death occurring 6-14 hours after birth. Sec10 FL/FL;Ksp-Cre embryos developed ureteropelvic junction obstructions between E17.5 and E18.5 as a result of degeneration of the urothelium and subsequent overgrowth by surrounding mesenchymal cells. The urothelial cell layer that lines the urinary tract must maintain a hydrophobic luminal barrier again urine while remaining highly stretchable. This barrier is largely established by production of uroplakin proteins that are transported to the apical surface to establish large plaques. By E16.5, Sec10 FL/FL;Ksp-Cre ureter and pelvic urothelium showed decreased uroplakin-3 protein at the luminal surface, and complete absence of uroplakin-3 by E17.5. Affected urothelium at the UPJ showed irregular barriers that exposed the smooth muscle layer to urine, suggesting this may trigger the surrounding mesenchymal cells to overgrow the lumen. Findings from this novel mouse model show Sec10 is critical for the development of the urothelium in ureters, and provides experimental evidence that failure of this urothelial barrier may contribute to human congenital urinary tract obstructions

    Arl13b and the exocyst interact synergistically in ciliogenesis

    No full text
    International audienceArl13b belongs to the ADP-ribosylation factor family within the Ras superfamily of regulatory GTPases. Mutations in Arl13b cause Joubert syndrome, which is characterized by congenital cerebellar ataxia, hypotonia, oculomotor apraxia, and mental retardation. Arl13b is highly enriched in cilia and is required for ciliogenesis in multiple organs. Nevertheless, the precise role of Arl13b remains elusive. Here we report that the exocyst subunits Sec8, Exo70, and Sec5 bind preferentially to the GTP-bound form of Arl13b, consistent with the exocyst being an effector of Arl13b. Moreover, we show that Arl13b binds directly to Sec8 and Sec5. In zebrafish, depletion of arl13b or the exocyst subunit sec10 causes phenotypes characteristic of defective cilia, such as curly tail up, edema, and abnormal pronephric kidney development. We explored this further and found a synergistic genetic interaction between arl13b and sec10 morphants in cilia-dependent phenotypes. Through conditional deletion of Arl13b or Sec10 in mice, we found kidney cysts and decreased ciliogenesis in cells surrounding the cysts. Moreover, we observed a decrease in Arl13b expression in the kidneys from Sec10 conditional knockout mice. Taken together, our results indicate that Arl13b and the exocyst function together in the same pathway leading to functional cilia
    corecore