141 research outputs found

    CMEs from AR 10365: Morphology and Physical Parameters of the Ejections and of the Associated Current Sheet

    Get PDF
    We study the evolution and physical parameters of three consecutive coronal mass ejections (CMEs) that occurred at the west limb of the Sun on 2003 June 2 at 00:30, 08:54, 16:08 UT, respectively. The Large Angle and Spectrometric Coronagraph Experiment (LASCO) CME catalog shows that the CMEs entered the C2 field of view with position angles within a 5° interval. This suggests a common origin for the ejections, to be identified with the magnetic system associated with the active region that lies below the CMEs. The close proximity in time and source location of the events prompted us to analyze LASCO white light data and Ultraviolet Coronagraph Spectrometer (UVCS) spectra with the aim of identifying similarities and differences among the three CMEs. It turns out that two of them display the typical three-part structure, while no conclusion can be drawn about the morphology of the third ejection. The CMEs plasma is "cool," i.e., electron temperatures in the CMEs front are of the order of 2 × 105 K, with no significant variation between different events. However, ejection speeds vary by a factor of ~1.5 between consecutive events and electron densities (more precisely emission measures) by a factor of ~6 between the first CME and the second and third CMEs. In the aftermath of all events, we found evidence of current sheets (CSs) both in LASCO and UVCS. We give here the CS physical parameters (electron temperature, density, and kinetic temperature) and follow, in one of the events, their temporal evolution over a 6 hr time interval. A discussion of our results, in the framework of previous findings, concludes the paper

    Reconnection in a slow Coronal Mass Ejection

    Get PDF
    This paper aims at studying reconnection occurring in the aftermath of the 28 May 2004, CME, first imaged by the LASCO (Large Angle and Spectrometric Coronagraph) C2 at 11:06 UT. The CME was observed in White Light and UV radiation: images acquired by the LASCO C2 and C3 coronagraphs and spectra acquired by UVCS (Ultraviolet Coronagraph Spectrometer) allowed us to identify the level at which field lines, stretched outwards by the CME ejection, reconnect below the CME bubble. As the CME propagates outwards, reconnection occurs at increasingly higher levels. The process goes on at a low pace for several hours: here we give the profile of the reconnection rate vs. heliocentric distance over a time interval of &asymp;14 h after the CME onset, extending estimates of the reconnection rate to larger distances than previously inferred by other authors. The reconnection rate appears to decrease with time/altitude. We also calculate upper and lower limits to the density in the diffusion region between 4 and 7 <I>R</I><sub>&#x2299;</sub> and conclude by comparing estimates of the classical and anomalous resistivity in the diffusion region with the value inferred from the data. The latter turns out to be &ge;5 order of magnitudes larger than predicted by classical or anomalous theories, pointing to the need of identifying the process responsible for the observed value

    A Comprehensive Study of the Initiation and Early Evolution of a Coronal Mass Ejection from Ultraviolet and White-Light Data

    Get PDF
    In this work we analyze simultaneous UV and white-light (WL) observations of a slow CME that occurred on 2000 January 31. Unlike most CMEs studied in the UV so far, this event was not associated with a flare or filament eruption. Based on vector magnetograph data and magnetic field models, we find that field disruption in an active region (AR) was driven by flux emergence and shearing motions, leading to the CME and to post-CME arcades seen in the EUV. WL images, acquired by the Mark IV coronagraph at the Mauna Loa Observatory, allowed us to identify the CME front, bubble, and core shortly (about 1 hr) after the CME ejection. From polarized brightness (pB) Mauna Loa data we estimated the mass and electron densities of the CME. The CME mass increases with time, indicating that about 2/3 of the mass originates above 1.6 R☉. Analysis of the UV spectra, acquired by the Solar and Heliospheric Observatory Ultraviolet Coronagraph Spectrometer (SOHO UVCS) at 1.6 and 1.9 R☉, allowed us to derive the electron temperature distribution across the CME. The temperature maximizes at the CME core and increases between 1.6 and 1.9 R☉. This event was unusual, in that the leading edge and the CME core were hotter than the ambient corona. We discuss magnetic heating and adiabatic compression as explanations for the high temperatures in the core and leading edge, respectively

    Hate speech annotation: Analysis of an Italian twitter corpus

    Get PDF
    The paper describes the development of a corpus from social media built with the aim of representing and analysing hate speech against some minority groups in Italy. The issues related to data collection and annotation are introduced, focusing on the challenges we addressed in designing a multifaceted set of labels where the main features of verbal hate expressions may be modelled. Moreover, an analysis of the disagreement among the annotators is presented in order to carry out a preliminary evaluation of the data set and the scheme.L’articolo descrive un corpus di testi estratti da social media costruito con il principale obiettivo di rappresentare ed analizzare il fenomeno dell’hate speech rivolto contro i migranti in Italia. Vengono introdotti gli aspetti significativi della raccolta ed annotazione dei dati, richiamando l’attenzione sulle sfide affrontate per progettare un insieme di etichette che rifletta le molte sfaccettature necessarie a cogliere e modellare le caratteristiche delle espressioni di odio. Inoltre viene presentata un’analisi del disagreement tra gli annotatori allo scopo di tentare una preliminare valutazione del corpus e dello schema di annotazione stesso

    PHYSICAL PARAMETERS OF STANDARD AND BLOWOUT JETS

    Get PDF
    The X-ray Telescope on board the Hinode mission revealed the occurrence, in polar coronal holes, of much more numerous jets than previously indicated by the Yohkoh/Soft X-ray Telescope. These plasma ejections can be of two types, depending on whether they fit the standard reconnection scenario for coronal jets or if they include a blowout-like eruption. In this work, we analyze two jets, one standard and one blowout, that have been observed by the Hinode and STEREO experiments. We aim to infer differences in the physical parameters that correspond to the different morphologies of the events. To this end, we adopt spectroscopic techniques and determine the profiles of the plasma temperature, density, and outflow speed versus time and position along the jets. The blowout jet has a higher outflow speed, a marginally higher temperature, and is rooted in a stronger magnetic field region than the standard event. Our data provide evidence for recursively occurring reconnection episodes within both the standard and the blowout jet, pointing either to bursty reconnection or to reconnection occurring at different locations over the jet lifetimes. We make a crude estimate of the energy budget of the two jets and show how energy is partitioned among different forms. Also, we show that the magnetic energy that feeds the blowout jet is a factor of 10 higher than the magnetic energy that fuels the standard event
    • …
    corecore