5 research outputs found

    In silico analysis of the antigenic properties of iron-regulated proteins against neisseria meningitides

    Get PDF
    Neisseria meningitidis is a commensal pathogen that causes infectious cerebrospinal disease in people of all ages. The multivariate role of six disease-causing polysaccharide serotypes is found to play a crucial role in developing vaccines (or general treatment strategies) to treat this emerging pathogen. Iron is a crucial transition metal for N. meningitidis. Proteomic analysis data could be valuable for vaccine design. Here, we conduct a comparative study using computational bioinformatic tools to identify the most effective iron-regulated outer membrane proteins (OMPs) as immunogenic targets for a potential vaccine against N. meningitidis. The basic properties of N. meningitidis OMPs are explored for flexibility, solubility, hydrophilicity, beta-turns, and overall antigenic probability. Results of our study suggest that iron-regulated OMPs are flexible and soluble in water with high densities of conformational B-cell epitopes. As such, they can be recommended as a novel candidate for a vaccine against N. meningitidis both in vitro and in vivo

    Prognostic role of EGR1 in breast cancer : A systematic review

    Get PDF
    Funding Information: This study was supported by grants from the National Research Foundation (NRF) funded by the Korean government (grant no. 2015R1A5A1009701 and 2019M3A9H1030682); and, in part by the National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science and ICT)-NRF-2017R1A2B2012337. In addition, this paper was written as part of Konkuk University's research support program for its faculty on sabbatical leave in 2019-2020.Peer reviewedPublisher PD

    The Orphan GPR50 Receptor Regulates the Aggressiveness of Breast Cancer Stem-like Cells via Targeting the NF-kB Signaling Pathway

    No full text
    The expression of GPR50 in CSLC and several breast cancer cell lines was assessed by RT-PCR and online platform (UALCAN, GEPIA, and R2 gene analysis). The role of GPR50 in driving CSLC, sphere formation, cell proliferation, and migration was performed using shGPR50 gene knockdown, and the role of GPR50-regulated signaling pathways was examined by Western blotting and Luciferase Assay. Herein, we confirmed that the expression of G protein-coupled receptor 50 (GPR50) in cancer stem-like cells (CSLC) is higher than that in other cancer cells. We examined that the knockdown of GPR50 in CSLC led to decreased cancer properties, such as sphere formation, cell proliferation, migration, and stemness. GPR50 silencing downregulates NF-kB signaling, which is involved in sphere formation and aggressiveness of CSLC. In addition, we demonstrated that GPR50 also regulates ADAM-17 activity by activating NOTCH signaling pathways through the AKT/SP1 axis in CSLC. Overall, we demonstrated a novel GPR50-mediated regulation of the NF-κB-Notch signaling pathway, which can provide insights into CSLC progression and prognosis, and NF-κB-NOTCH-based CSLC treatment strategies

    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells

    No full text
    Reactive oxygen species (ROS) induce carcinogenesis by causing genetic mutations, activating oncogenes, and increasing oxidative stress, all of which affect cell proliferation, survival, and apoptosis. When compared to normal cells, cancer cells have higher levels of ROS, and they are responsible for the maintenance of the cancer phenotype; this unique feature in cancer cells may, therefore, be exploited for targeted therapy. Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors. Adaptive stress responses may be induced by persistent ROS stress, allowing cancer cells to survive with high levels of ROS while maintaining cellular viability. However, large amounts of ROS make cancer cells extremely susceptible to quercetin, one of the most available dietary flavonoids. Because of the molecular and metabolic distinctions between malignant and normal cells, targeting ROS metabolism might help overcome medication resistance and achieve therapeutic selectivity while having little or no effect on normal cells. The powerful bioactivity and modulatory role of quercetin has prompted extensive research into the chemical, which has identified a number of pathways that potentially work together to prevent cancer, alongside, QC has a great number of evidences to use as a therapeutic agent in cancer stem cells. This current study has broadly demonstrated the function-mechanistic relationship of quercetin and how it regulates ROS generation to kill cancer and cancer stem cells. Here, we have revealed the regulation and production of ROS in normal cells and cancer cells with a certain signaling mechanism. We demonstrated the specific molecular mechanisms of quercetin including MAPK/ERK1/2, p53, JAK/STAT and TRAIL, AMPKα1/ASK1/p38, RAGE/PI3K/AKT/mTOR axis, HMGB1 and NF-κB, Nrf2-induced signaling pathways and certain cell cycle arrest in cancer cell death, and how they regulate the specific cancer signaling pathways as long-searched cancer therapeutics
    corecore