150 research outputs found

    Analysis and Functional Annotation of Expressed Sequence Tags from the Asian Longhorned Beetle, Anoplophora glabripennis

    Get PDF
    The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is one of the most economically and ecologically devastating forest insects to invade North America in recent years. Despite its substantial impact, limited effort has been expended to define the genetic and molecular make-up of this species. Considering the significant role played by late-stadia larvae in host tree decimation, a small-scale EST sequencing project was done using a cDNA library constructed from 5th -instar A. glabripennis. The resultant dataset consisted of 599 high quality ESTs that, upon assembly, yielded 381 potentially unique transcripts. Each of these transcripts was catalogued as to putative molecular function, biological process, and associated cellular component according to the Gene Ontology classification system. Using this annotated dataset, a subset of assembled sequences was identified that are putatively associated with A. glabnpennis development and metamorphosis. This work will contribute to understanding of the diverse molecular mechanisms that underlie coleopteran morphogenesis and enable the future development of novel control strategies for management of this insect pest

    Preimaginal Stages of the Emerald Ash Borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae): An Invasive Pest on Ash Trees (Fraxinus)

    Get PDF
    This study provides the most detailed description of the immature stages of Agrilus planipennis Fairmaire to date and illustrates suites of larval characters useful in distinguishing among Agrilus Curtis species and instars. Immature stages of eight species of Agrilus were examined and imaged using light and scanning electron microscopy. For A. planipennis all preimaginal stages (egg, instars I-IV, prepupa and pupa) were described. A combination of 14 character states were identified that serve to identify larvae of A. planipennis. Our results support the segregation of Agrilus larvae into two informal assemblages based on characters of the mouthparts, prothorax, and abdomen: the A. viridis and A. ater assemblages, with A. planipennis being more similar to the former. Additional evidence is provided in favor of excluding A. planipennis from the subgenus Uragrilus

    Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza virus that expresses an altered nucleoprotein sequence

    Get PDF
    Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes

    Evaluation of non-inferiority of intradermal versus adjuvanted seasonal influenza vaccine using two serological techniques: a randomised comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although seasonal influenza vaccine is effective in the elderly, immune responses to vaccination are lower in the elderly than in younger adults. Strategies to optimise responses to vaccination in the elderly include using an adjuvanted vaccine or using an intradermal vaccination route. The immunogenicity of an intradermal seasonal influenza vaccine was compared with that of an adjuvanted vaccine in the elderly.</p> <p>Methods</p> <p>Elderly volunteers (age ≥ 65 years) were randomised to receive a single dose of trivalent seasonal influenza vaccine: either a split-virion vaccine containing 15 μg haemagglutinin [HA]/strain/0.1-ml dose administered intradermally, or a subunit vaccine (15 μg HA/strain/0.5-ml dose) adjuvanted with MF59C.1 and administered intramuscularly. Blood samples were taken before and 21 ± 3 days post-vaccination. Anti-HA antibody titres were assessed using haemagglutination inhibition (HI) and single radial haemolysis (SRH) methods. We aimed to show that the intradermal vaccine was non-inferior to the adjuvanted vaccine.</p> <p>Results</p> <p>A total of 795 participants were enrolled (intradermal vaccine n = 398; adjuvanted vaccine n = 397). Non-inferiority of the intradermal vaccine was demonstrated for the A/H1N1 and B strains, but not for the A/H3N2 strain (upper bound of the 95% CI = 1.53) using the HI method, and for all three strains by the SRH method. A <it>post-hoc </it>analysis of covariance to adjust for baseline antibody titres demonstrated the non-inferiority of the intradermal vaccine by HI and SRH methods for all three strains. Both vaccines were, in general, well tolerated; the incidence of injection-site reactions was higher for the intradermal (70.1%) than the adjuvanted vaccine (33.8%) but these reactions were mild and of short duration.</p> <p>Conclusions</p> <p>The immunogenicity and safety of the intradermal seasonal influenza vaccine in the elderly was comparable with that of the adjuvanted vaccine. Intradermal vaccination to target the immune properties of the skin appears to be an appropriate strategy to address the challenge of declining immune responses in the elderly.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: NCT00554333.</p

    Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop

    Get PDF
    Nanomaterials and their associated technologies hold promising opportunities for the development of new materials and applications in a wide variety of disciplines, including medicine, environmental remediation, waste treatment, and energy conservation. However, current information regarding the environmental effects and health risks associated with nanomaterials is limited and sometimes contradictory. This article summarizes the conclusions of a 2008 NATO workshop designed to evaluate the wide-scale implications (e.g., benefits, risks, and costs) of the use of nanomaterials on human health and the environment. A unique feature of this workshop was its interdisciplinary nature and focus on the practical needs of policy decision makers. Workshop presentations and discussion panels were structured along four main themes: technology and benefits, human health risk, environmental risk, and policy implications. Four corresponding working groups (WGs) were formed to develop detailed summaries of the state-of-the-science in their respective areas and to discuss emerging gaps and research needs. The WGs identified gaps between the rapid advances in the types and applications of nanomaterials and the slower pace of human health and environmental risk science, along with strategies to reduce the uncertainties associated with calculating these risks

    Adenovirus-Vectored Drug-Vaccine Duo as a Rapid-Response Tool for Conferring Seamless Protection against Influenza

    Get PDF
    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs

    Potent Neutralization of Influenza A Virus by a Single-Domain Antibody Blocking M2 Ion Channel Protein

    Get PDF
    Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH) libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses

    Gravitational sliding of the Mt. Etna massif along a sloping basement

    Get PDF
    Geological field evidence and laboratory modelling indicate that volcanoes constructed on slopes slide downhill. If this happens on an active volcano, then the movement will distort deformation data and thus potentially compromise interpretation. Our recent GPS measurements demonstrate that the entire edifice of Mt. Etna is sliding to the ESE, the overall direction of slope of its complex, rough sedimentary basement. We report methods of discriminating the sliding vector from other deformation processes and of measuring its velocity, which averaged 14 mm year−1 during four intervals between 2001 and 2012. Though sliding of one sector of a volcano due to flank instability is widespread and well-known, this is the first time basement sliding of an entire active volcano has been directly observed. This is important because the geological record shows that such sliding volcanoes are prone to devastating sector collapse on the downslope side, and whole volcano migration should be taken into account when assessing future collapse hazard. It is also important in eruption forecasting, as the sliding vector needs to be allowed for when interpreting deformation events that take place above the sliding basement within the superstructure of the active volcano, as might occur with dyke intrusion or inflation/deflation episodes
    corecore