293 research outputs found
Electromagnetic waves destabilized by runaway electrons in near-critical electric fields
Runaway electron distributions are strongly anisotropic in velocity space.
This anisotropy is a source of free energy that may destabilize electromagnetic
waves through a resonant interaction between the waves and the energetic
electrons. In this work we investigate the high-frequency electromagnetic waves
that are destabilized by runaway electron beams when the electric field is
close to the critical field for runaway acceleration. Using a runaway electron
distribution appropriate for the near-critical case we calculate the linear
instability growth rate of these waves and conclude that the obliquely
propagating whistler waves are most unstable. We show that the frequencies,
wave numbers and propagation angles of the most unstable waves depend strongly
on the magnetic field. Taking into account collisional and convective damping
of the waves, we determine the number density of runaways that is required to
destabilize the waves and show its parametric dependences.Comment: 22 pages, 11 figures, to be published in Physics of Plasma
Reducing systematic errors in time-frequency resolved mode number analysis
The present paper describes the effect of magnetic pick-up coil transfer
functions on mode number analysis in magnetically confined fusion plasmas.
Magnetic probes mounted inside the vacuum chamber are widely used to
characterize the mode structure of magnetohydrodynamic modes, as, due to their
relative simplicity and compact nature, several coils can be distributed over
the vessel. Phase differences between the transfer functions of different
magnetic pick-up coils lead to systematic errors in time- and frequency
resolved mode number analysis. This paper presents the first in-situ,
end-to-end calibration of a magnetic pick-up coil system which was carried out
by using an in-vessel driving coil on ASDEX Upgrade. The effect of the phase
differences in the pick-up coil transfer functions is most significant in the
50-250 kHz frequency range, where the relative phase shift between the
different probes can be up to 1 radian (~60{\deg}). By applying a correction
based on the transfer functions we found smaller residuals of mode number
fitting in the considered discharges. In most cases an order of magnitude
improvement was observed in the residuals of the mode number fits, which could
open the way to investigate weaker electromagnetic oscillations with even high
mode numbers
Experimental investigation of the radial structure of energetic particle driven modes
Alfv\'en eigenmodes (AEs) and energetic particle modes (EPMs) are often
excited by energetic particles (EPs) in tokamak plasmas. One of the main open
questions concerning EP driven instabilities is the non-linear evolution of the
mode structure. The aim of the present paper is to investigate the properties
of beta-induced AEs (BAEs) and EP driven geodesic acoustic modes (EGAMs)
observed in the ramp-up phase of off-axis NBI heated ASDEX Upgrade (AUG)
discharges. This paper focuses on the changes in the mode structure of
BAEs/EGAMs during the non-linear chirping phase. Our investigation has shown
that in case of the observed down-chirping BAEs the changes in the radial
structure are smaller than the uncertainty of our measurement. This behaviour
is most probably the consequence of that BAEs are normal modes, thus their
radial structure strongly depends on the background plasma parameters rather
than on the EP distribution. In the case of rapidly upward chirping EGAMs the
analysis consistently shows shrinkage of the mode structure. The proposed
explanation is that the resonance in the velocity space moves towards more
passing particles which have narrower orbit widths.Comment: submitted to Nuclear Fusio
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Runaway electrons with strongly anisotropic distributions present in
post-disruption tokamak plasmas can destabilize the extraordinary electron
(EXEL) wave. The present work investigates the dynamics of the quasi-linear
evolution of the EXEL instability for a range of different plasma parameters
using a model runaway distribution function valid for highly relativistic
runaway electron beams produced primarily by the avalanche process. Simulations
show a rapid pitch-angle scattering of the runaway electrons in the high energy
tail on the time scale. Due to the wave-particle
interaction, a modification to the synchrotron radiation spectrum emitted by
the runaway electron population is foreseen, exposing a possible experimental
detection method for such an interaction
Special behavior of alkali beam emission spectroscopy in low-ion-temperature plasma
Beam emission spectroscopy (BES) is a powerful plasma diagnostic method
especially suited for the measurement of plasma density and its fluctuations.
As such, synthetic BES codes are regularly used to aid the design or
utilization of these diagnostic systems. However, synthetic diagnostics can
also be used to study the method in previously not yet explored operational
conditions. This paper presents such an analysis utilizing the RENATE-OD
synthetic diagnostic code for a hypothetical alkali BES system on the HSX
stellarator. HSX is a device featuring an unusual operating regime in the world
of fusion devices due to the low ion temperature and low plasma density. It was
found that BES shows unusual tendencies in these conditions. The relation
between beam energy and plasma penetration in low-ion-temperature plasma,
together with unique emission features facilitated by low-density plasma, and
the underlying reasons behind these features are explored in this paper
- …