49 research outputs found

    Radiative multipole moments of integer-spin fields in curved spacetime

    Get PDF
    Radiative multipole moments of scalar, electromagnetic, and linearized gravitational fields in Schwarzschild spacetime are computed to third order in v in a weak-field, slow-motion approximation, where v is a characteristic velocity associated with the motion of the source. To zeroth order in v, a radiative moment of order l is given by the corresponding source moment differentiated l times with respect to retarded time. At second order in v, additional terms appear inside the spatial integrals. These are near-zone corrections which depend on the detailed behavior of the source. At third order in v, the correction terms occur outside the spatial integrals, so that they do not depend on the detailed behavior of the source. These are wave-propagation corrections which are heuristically understood as arising from the scattering of the radiation by the spacetime curvature surrounding the source. Our calculations show that the wave-propagation corrections take a universal form which is independent of multipole order and field type. We also show that in general relativity, temporal and spatial curvatures contribute equally to the wave-propagation corrections.Comment: 34 pages, ReVTe

    Exact Analytic Solutions for the Rotation of an Axially Symmetric Rigid Body Subjected to a Constant Torque

    Get PDF
    New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes' theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a "virtual" spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this "virtual" body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.Comment: "Errata Corridge Postprint" version of the journal paper. The following typos present in the Journal version are HERE corrected: 1) Definition of \beta, before Eq. 18; 2) sign in the statement of Theorem 3; 3) Sign in Eq. 53; 4)Item r_0 in Eq. 58; 5) Item R_{SN}(0) in Eq. 6

    Effects of repleting organic phosphates in banked erythrocytes on plasma metabolites and vasoactive mediators after red cell exchange transfusion in sickle cell disease

    Get PDF
    Background - Red blood cell (RBC) exchange (RCE) transfusion therapy is indicated for certain patients with sickle cell disease (SCD). Although beneficial, this therapy is costly and inconvenient to patients, who may require it monthly or more often. Identification of blood and plasma biomarkers that could improve or help individualise RCE therapy is of interest. Here we examined relevant blood and plasma metabolites and biomarkers of vasoactivity and RBC fragility in a pilot study of SCD patients undergoing RCE using either standard RBC units or RBC units treated with a US Food and Drug Administration (FDA)-approved additive solution containing phosphate, inosine, pyruvate, and adenine ("PIPA"). Materials and methods - In this prospective, single-blind, cross-over pilot clinical trial, patients were randomised to receive either standard RBC exchange or PIPA-treated RBC exchange transfusion with each RCE session over a 6-month treatment period. Pre- and post-transfusion blood samples were obtained and analysed for RBC O2 affinity, ATP, purine metabolites, RBC microparticles, and cell free haemoglobin. Results - Red blood cell O2 affinity was maintained after PIPA-RCE in contrast to standard RCE, after which P50 fell (net O2 affinity rose). Plasma ATP did not change significantly after RCE using either of the RBC unit types. Exchange transfusion with PIPA-treated RBC units led to modest increases in plasma inosine and hypoxanthine. Plasma cell free haemoglobin fell after either standard or PIPA-treated RBC exchange transfusion (novel findings), and to a similar extent. RBC-derived microparticles in the plasma fell significantly and similarly after both standard and PIPA-treated RCE transfusion. Discussion - In summary, treatment of RBCs with PIPA prior to RCE elicited favourable or neutral changes in key metabolic and vascular biomarkers. Further study of its efficacy and safety is recommended and could ultimately serve to improve outcomes in chronically transfused SCD patients

    The Hamiltonian of Einstein affine-metric formulation of General Relativity

    Full text link
    It is shown that the Hamiltonian of the Einstein affine-metric (first order) formulation of General Relativity (GR) leads to a constraint structure that allows the restoration of its unique gauge invariance, four-diffeomorphism, without the need of any field dependent redefinition of gauge parameters as is the case for the second order formulation. In the second order formulation of ADM gravity the need for such a redefinition is the result of the non-canonical change of variables [arXiv: 0809.0097]. For the first order formulation, the necessity of such a redefinition "to correspond to diffeomorphism invariance" (reported by Ghalati [arXiv: 0901.3344]) is just an artifact of using the Henneaux-Teitelboim-Zanelli ansatz [Nucl. Phys. B 332 (1990) 169], which is sensitive to the choice of linear combination of tertiary constraints. This ansatz cannot be used as an algorithm for finding a gauge invariance, which is a unique property of a physical system, and it should not be affected by different choices of linear combinations of non-primary first class constraints. The algorithm of Castellani [Ann. Phys. 143 (1982) 357] is free from such a deficiency and it leads directly to four-diffeomorphism invariance for first, as well as for second order Hamiltonian formulations of GR. The distinct role of primary first class constraints, the effect of considering different linear combinations of constraints, the canonical transformations of phase-space variables, and their interplay are discussed in some detail for Hamiltonians of the second and first order formulations of metric GR. The first order formulation of Einstein-Cartan theory, which is the classical background of Loop Quantum Gravity, is also discussed.Comment: 74 page

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    corecore