101 research outputs found
Evaluation of the simultaneous production of lutein and lipids using a vertical alveolar panel bioreactor for three Chlorella speciesÂ
The concept of a biorefinery improves the economic efficiency of a biofuel production process from microalgae by recovering high value added compounds. Lutein is a carotenoid currently extracted from petals of Tagetes erecta with an established market in poultry and in human nutritional supplements. For the very first time, an extended study on the lipid and lutein production over three Chlorella species as well as cell disruption methods was performed. Chlorella vulgaris, Chlorella zofingiensis and Chlorella protothecoides were grown in an indoor vertical alveolar panel photobioreactor with continuous illumination, and two cell
disruption methodswere assessed at a laboratory scale: glass bead vortexing and ball mill grinding. For C. vulgaris, C. zofingiensis and C. protothecoides the intracellular lutein content was measured as: 3.86, 4.38 and 3.59 mgg-1 respectively. Lipid contents vary slightly among microalgae with a value close to 9% w/w. Biomass and lutein productivities were found to be higher for C. vulgaris (0.131 gL-1 d-1, 0.51 mg L-1 d-1)
and for C. zofingiensis (0.122 gL-1 d-1, 0.53 mg L-1 d-1) compared to C. protothecoides (0.103 gL-1 d-1, 0.37mg L-1 d-1). C. vulgaris 1803 and C. zofingiensis B 32 were found to be promising organisms for simultaneous production of lutein and lipids. Although all the microalgae under study belong to the same genus, a species-specific response was observed for each of the cell grinding methods tested
The de Rham homotopy theory and differential graded category
This paper is a generalization of arXiv:0810.0808. We develop the de Rham
homotopy theory of not necessarily nilpotent spaces, using closed dg-categories
and equivariant dg-algebras. We see these two algebraic objects correspond in a
certain way. We prove an equivalence between the homotopy category of schematic
homotopy types and a homotopy category of closed dg-categories. We give a
description of homotopy invariants of spaces in terms of minimal models. The
minimal model in this context behaves much like the Sullivan's minimal model.
We also provide some examples. We prove an equivalence between fiberwise
rationalizations and closed dg-categories with subsidiary data.Comment: 47 pages. final version. The final publication is available at
http://www.springerlink.co
Thermal conductivity of Mg-doped CuGeO_3 at very low temperatures: Heat conduction by antiferromagnetic magnons
Thermal conductivity \kappa is measured at very low temperatures down to 0.28
K for pure and Mg-doped CuGeO_3 single crystals. The doped samples carry larger
amount of heat than the pure sample at the lowest temperature. This is because
antiferromagnetic magnons appear in the doped samples and are responsible for
the additional heat conductivity, while \kappa of the pure sample represents
phonon conductivity at such low temperatures. The maximum energy of the magnon
is estimated to be much lower than the spin-Peierls-gap energy. The result
presents the first example that \kappa at very low temperatures probes the
magnon transport in disorder-induced antiferromagnetic phase of spin-gap
systems
Fish assemblage stability over fifty years in the Lake Pontchartrain Estuary; comparisons among habitats using Canonical Correspondence Analysis
We assessed fish assemblage stability over the last half century in Lake Pontchartrain, an environmentally degraded oligohaline estuary in southeastern Louisiana. Because assemblage instability over time has been consistently associated with severe habitat degradation, we attempted to determine whether fish assemblages in demersal, nearshore, and pelagic habitats exhibited change that was unrelated to natural fluctuations in environmental variables (e.g., assemblage changes between wet and dry periods). Collection data from three gear types (trawl, beach seine, and gill nets) and monthly environmental data (salinity, temperature, and Secchi depth) were compared for four collecting periods: 1954 (dry period), 1978 (wet period), 1996–1998 (wet period), and 1998–2000 (dry period). Canonical correspondence analysis (CCA) revealed that although the three environmental variables were significantly associated with the distribution and abundance patterns of fish assemblages in all habitats (with the exception of Secchi depth for pelagic samples), most fish assemblage change occurred among sampling periods (i.e., along a temporal gradient unrelated to changing environmental variables). Assemblage instability was the most pronounced for fishes collected by trawls from demersal habitats. A marked lack of cyclicity in the trawl data CCA diagram indicated a shift away from a baseline demersal assemblage of 50 yr ago. Centroid positions for the five most collected species indicated that three benthic fishes, Atlantic croaker (Micropogonias undulatus), spot (Leiostomus xanthurus), and hardhead catfish (Arius felis), were more dominant inWe assessed fish assemblage stability over the last half century in Lake Pontchartrain, an environmentally degraded oligohaline estuary in southeastern Louisiana. Because assemblage instability over time has been consistently associated with severe habitat degradation, we attempted to determine whether fish assemblages in demersal, nearshore, and pelagic habitats exhibited change that was unrelated to natural fluctuations in environmental variables (e.g., assemblage changes between wet and dry periods). Collection data from three gear types (trawl, beach seine, and gill nets) and monthly environmental data (salinity, temperature, and Secchi depth) were compared for four collecting periods: 1954 (dry period), 1978 (wet period), 1996–1998 (wet period), and 1998–2000 (dry period). Canonical correspondence analysis (CCA) revealed that although the three environmental variables were significantly associated with the distribution and abundance patterns of fish assemblages in all habitats (with the exception of Secchi depth for pelagic samples), most fish assemblage change occurred among sampling periods (i.e., along a temporal gradient unrelated to changing environmental variables). Assemblage instability was the most pronounced for fishes collected by trawls from demersal habitats. A marked lack of cyclicity in the trawl data CCA diagram indicated a shift away from a baseline demersal assemblage of 50 yr ago. Centroid positions for the five most collected species indicated that three benthic fishes, Atlantic croaker (Micropogonias undulatus), spot (Leiostomus xanthurus), and hardhead catfish (Arius felis), were more dominant in past demersal assemblages (1954 and 1978). A different situation was shown for planktivorous species collected by trawls with bay anchovy (Anchoa mitchilli) becoming more dominant in recent assemblages and Gulf enhaden (Brevoortia patronus) remaining equally represented in assemblages over time. Changes in fish assemblages from nearshore (beach seine) and pelagic (gill net) habitats were more closely related to environmental fluctuations, though the CCA for beach seine data also indicated a decrease in the dominance of M. undulatus and an increase in the proportion of A. mitchilli over time. The reduced assemblage role of benthic fishes and the marked assemblage change indicated by trawl data suggest that over the last half century demersal habitats in Lake Pontchartrain have been impacted more by multiple anthropogenic stressors than nearshore or pelagic habitats. past demersal assemblages (1954 and 1978). A different situation was shown for planktivorous species collected by trawls with bay anchovy (Anchoa mitchilli) becoming more dominant in recent assemblages and Gulf menhaden (Brevoortia patronus) remaining equally represented in assemblages over time. Changes in fish assemblages from nearshore (beach seine) and pelagic (gill net) habitats were more closely related to environmental fluctuations, though the CCA for beach seine data also indicated a decrease in the dominance of M. undulatus and an increase in the proportion of A. mitchilli over time. The reduced assemblage role of benthic fishes and the marked assemblage change indicated by trawl data suggest that over the last half century demersal habitats in Lake Pontchartrain have been impacted more by multiple anthropogenic stressors than nearshore or pelagic habitats
Gentamicin Rapidly Inhibits Mitochondrial Metabolism in High-Frequency Cochlear Outer Hair Cells
Aminoglycosides (AG), including gentamicin (GM), are the most frequently used antibiotics in the world and are proposed to cause irreversible cochlear damage and hearing loss (HL) in 1/4 of the patients receiving these life-saving drugs. Akin to the results of AG ototoxicity studies, high-frequency, basal turn outer hair cells (OHCs) preferentially succumb to multiple HL pathologies while inner hair cells (IHCs) are much more resilient. To determine if endogenous differences in IHC and OHC mitochondrial metabolism dictate differential sensitivities to AG-induced HL, IHC- and OHC-specific changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH) fluorescence during acute (1 h) GM treatment were compared. GM-mediated decreases in NADH fluorescence and succinate dehydrogenase activity were observed shortly after GM application. High-frequency basal turn OHCs were found to be metabolically biased to rapidly respond to alterations in their microenvironment including GM and elevated glucose exposures. These metabolic biases may predispose high-frequency OHCs to preferentially produce cell-damaging reactive oxygen species during traumatic challenge. Noise-induced and age-related HL pathologies share key characteristics with AG ototoxicity, including preferential OHC loss and reactive oxygen species production. Data from this report highlight the need to address the role of mitochondrial metabolism in regulating AG ototoxicity and the need to illuminate how fundamental differences in IHC and OHC metabolism may dictate differences in HC fate during multiple HL pathologies
The Conley Conjecture and Beyond
This is (mainly) a survey of recent results on the problem of the existence
of infinitely many periodic orbits for Hamiltonian diffeomorphisms and Reeb
flows. We focus on the Conley conjecture, proved for a broad class of closed
symplectic manifolds, asserting that under some natural conditions on the
manifold every Hamiltonian diffeomorphism has infinitely many (simple) periodic
orbits. We discuss in detail the established cases of the conjecture and
related results including an analog of the conjecture for Reeb flows, the cases
where the conjecture is known to fail, the question of the generic existence of
infinitely many periodic orbits, and local geometrical conditions that force
the existence of infinitely many periodic orbits. We also show how a recently
established variant of the Conley conjecture for Reeb flows can be applied to
prove the existence of infinitely many periodic orbits of a low-energy charge
in a non-vanishing magnetic field on a surface other than a sphere.Comment: 34 pages, 1 figur
- …