3,951 research outputs found

    InP and GaAs characterization with variable stoichiometry obtained by molecular spray

    Get PDF
    Both InP and GaAs surfaces were studied in parallel. A molecular spray technique was used to obtain two semiconductor surfaces with different superficial compositions. The structures of these surfaces were examined by electron diffraction. Electron energy loss was measured spectroscopically in order to determine surface electrical characteristics. The results are used to support conclusions relative to the role of surface composition in establishing a Schottky barrier effect in semiconductor devices

    Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    Full text link
    Project GRAND is a 100m x 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m^2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-penetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE Fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, the number of excess counts during the BATSE T90 time interval and within plus or minus five degrees of BATSE's direction was obtained. The highest statistical significance reported in this paper (2.7 sigma) is for the event that was predicted to be the most likely to be observed (GRB 971110).Comment: To be presented at the XXVIII International Cosmic Ray Conference, Tsukuba, Japa

    EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER

    Get PDF
    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge

    Modulation of Shoot Phosphate Level and Growth by PHOSPHATE1 Upstream Open Reading Frame.

    Get PDF
    Inorganic orthophosphate (Pi) is an essential nutrient for plant growth, and its availability strongly impacts crop yield. PHOSPHATE1 (PHO1) transfers Pi from root to shoot via Pi export into root xylem vessels. In this work, we demonstrate that an upstream open reading frame (uORF) present in the 5' untranslated region of the Arabidopsis (Arabidopsis thaliana) PHO1 inhibits its translation and influences Pi homeostasis. The presence of the uORF strongly inhibited the translation of a PHO1 5'UTR-luciferase construct in protoplasts. A point mutation removing the PHO1 uORF (ΔuORF) in transgenic Arabidopsis resulted in increased association of its mRNA with polysomes and led to higher PHO1 protein levels, independent of Pi availability. Interestingly, deletion of the uORF led to higher shoot Pi content and was associated with improved shoot growth under low external Pi supply and no deleterious effects under Pi-sufficient conditions. We further show that natural accessions lacking the PHO1 uORF exhibit higher PHO1 protein levels and shoot Pi content. Increased shoot Pi content was linked to the absence of the PHO1 uORF in a population of F2 segregants. We identified the PHO1 uORF in genomes of crops such as rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aesativum), and we verified the inhibitory effect of the rice PHO1 uORF on translation in protoplasts. Our work suggests that regulation of PHO1 expression via its uORF might be a genetic resource useful-both in natural populations and in the context of genome editing-toward improving plant growth under Pi-deficient conditions

    Is the lack of smartphone data skewing wealth indices in low-income settings?

    Get PDF
    BACKGROUND: Smartphones have rapidly become an important marker of wealth in low- and middle-income countries, but international household surveys do not regularly gather data on smartphone ownership and these data are rarely used to calculate wealth indices. METHODS: We developed a cross-sectional survey module delivered to 3028 households in rural northwest Burkina Faso to measure the effects of this absence. Wealth indices were calculated using both principal components analysis (PCA) and polychoric PCA for a base model using only ownership of any cell phone, and a full model using data on smartphone ownership, the number of cell phones, and the purchase of mobile data. Four outcomes (household expenditure, education level, and prevalence of frailty and diabetes) were used to evaluate changes in the composition of wealth index quintiles using ordinary least squares and logistic regressions and Wald tests. RESULTS: Households that own smartphones have higher monthly expenditures and own a greater quantity and quality of household assets. Expenditure and education levels are significantly higher at the fifth (richest) socioeconomic status (SES) quintile of full model wealth indices as compared to base models. Similarly, diabetes prevalence is significantly higher at the fifth SES quintile using PCA wealth index full models, but this is not observed for frailty prevalence, which is more prevalent among lower SES households. These effects are not present when using polychoric PCA, suggesting that this method provides additional robustness to missing asset data to measure underlying latent SES by proxy. CONCLUSIONS: The lack of smartphone data can skew PCA-based wealth index performance in a low-income context for the top of the socioeconomic spectrum. While some PCA variants may be robust to the omission of smartphone ownership, eliciting smartphone ownership data in household surveys is likely to substantially improve the validity and utility of wealth estimates

    Beam Profile Measurements and Simulations of the PETRA Laser-Wire

    Get PDF
    The Laser-wire will be an essential diagnostic tool at the International Linear Collider. It uses a finely focussed laser beam to measure the transverse profile of electron bunches by detecting the Compton-scattered photons (or degraded electrons) downstream of where the laser beam intersects the electron beam. Such a system has been installed at the PETRA storage ring at DESY, which uses a piezo-driven mirror to scan the laser-light across the electron beam. Lat- est results of experimental data taking are presented and compared to detailed simulations using the Geant4 based program BDSIM.Comment: 3 pagesm 4 figures. Submitted as a conference paper for the Particle Accelerator Conference 2005 (PAC05

    Quantum Hall resistance standards from graphene grown by chemical vapor deposition on silicon carbide

    Full text link
    Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10910^{-9} in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by sublimation of Si, under higher magnetic fields. Here, we report on a device made of graphene grown by chemical vapour deposition on SiC which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron density devices.Comment: 12 pages, 8 figure

    Simulation studies and background measurements for a laser based beam size monitor for the future linear collider

    Get PDF
    At several locations of the beam delivery system (BDS) of a future linear collider (FLC), beam spot sizes ranging from several hundreds to a few micrometers have to be measured. It is anticipated that laser wires will be used for this task in any FLC design. In order to optimize a laser wire system, simulations and background measurements have been carried out. Results are presented from simulations of the Compton scattering for the PETRA scenario. Furthermore results from measurements of backgrounds like synchrotron radiation and gas scattering have been measured at the positron storage ring PETRA at DESY and will be discussed

    Reconstructing the recent visual past: Hierarchical knowledge-based effects in visual working memory

    Get PDF
    This paper presents two experiments that examine the influence of multiple levels of knowledge on visual working memory (VWM). Experiment 1 focused on memory for faces. Faces were selected from continua that were constructed by morphing two face photographs in 100 steps; half of the continua morphed a famous face into an unfamiliar one, while the other half used two unfamiliar faces. Participants studied six sequentially presented faces each from a different continuum, and at test they had to locate one of these within its continuum. Experiment 2 examined immediate memory for object sizes. On each trial, six images were shown; these were either all vegetables or all random shapes. Immediately after each list, one item was presented again, in a new random size, and participants reproduced its studied size. Results suggested that two levels of knowledge influenced VWM. First, there was an overall central-tendency bias whereby items were remembered as being closer to the overall average or central tokens (averaged across items and trials) than they actually were. Second, when object knowledge was available for the to-be-remembered items (i.e., famous face or typical size of a vegetable) a further bias was introduced in responses
    corecore