57 research outputs found

    Carcinogens and DNA damage

    Get PDF
    Humans are variously and continuously exposed to a wide range of different DNA-damaging agents, some of which are classed as carcinogens. DNA damage can arise from exposure to exogenous agents, but damage from endogenous processes is probably far more prevalent. That said, epidemiological studies of migrant populations from regions of low cancer risk to high cancer risk countries point to a role for environmental and/or lifestyle factors playing a pivotal part in cancer aetiology. One might reasonably surmise from this that carcinogens found in our environment or diet are culpable. Exposure to carcinogens is associated with various forms of DNA damage such as single-stand breaks, double-strand breaks, covalently bound chemical DNA adducts, oxidative-induced lesions and DNA-DNA or DNA-protein cross-links. This review predominantly concentrates on DNA damage induced by the following carcinogens: polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, mycotoxins, ultraviolet light, ionising radiation, aristolochic acid, nitrosamines and particulate matter. Additionally, we allude to some of the cancer types where there is molecular epidemiological evidence that these agents are aetiological risk factors. The complex role that carcinogens play in the pathophysiology of cancer development remains obscure, but DNA damage remains pivotal to this process. [Abstract copyright: © 2018 The Author(s).

    Antiretroviral activity of the aminothiol WR1065 against Human Immunodeficiency virus (HIV-1) in vitro and Simian Immunodeficiency virus (SIV) ex vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WR1065 is the free-thiol metabolite of the cytoprotective aminothiol amifostine, which is used clinically at very high doses to protect patients against toxicity induced by radiation and chemotherapy. In an earlier study we briefly reported that the aminothiol WR1065 also inhibits HIV-1 replication in phytohemagglutinin (PHA)-stimulated human T-cell blasts (TCBs) infected in culture for 2 hr before WR1065 exposure. In this study we expanded the original observations to define the dose-response curve for that inhibition, and address the question of additive effects for the combination of WR1065 plus Zidovudine (AZT). Here we also explored the effect of WR1065 on SIV by examining TCBs taken from macaques with well-established infections several months with SIV.</p> <p>Results</p> <p>TCBs from healthy human donors were infected for 2 hr with HIV-1, and viral replication (p24) was measured after 72 hr of incubation with or without WR1065, AZT, or both drugs. HIV-1 replication, in HIV-1-infected human TCBs, was inhibited by 50% at 13 μM WR1065, a dose at which 80% of the cells were viable. Cell cycle parameters were the same or equivalent at 0, 9.5 and 18.7 μM WR1065, showing no drug-related toxicity. Combination of AZT with WR1065 showed that AZT retained antiretroviral potency in the presence of WR1065. Cultured CD8<sup>+ </sup>T cell-depleted PHA-stimulated TCBs from <it>Macaca mulatta </it>monkeys chronically infected with SIV were incubated 17 days with WR1065, and viral replication (p27) and cell viability were determined. Complete inhibition (100%) of SIV replication (p27) was observed when TCBs from 3 monkeys were incubated for 17 days with 18.7 μM WR1065. A lower dose, 9.5 μM WR1065, completely inhibited SIV replication in 2 of the 3 monkeys, but cells from the third macaque, with the highest viral titer, only responded at the high WR1065 dose.</p> <p>Conclusion</p> <p>The study demonstrates that WR1065 and the parent drug amifostine, the FDA-approved drug Ethyol, have antiretroviral activity. WR1065 was active against both an acute infection of HIV-1 and a chronic infection of SIV. The data suggest that the non-toxic drug amifostine may be a useful antiretroviral agent given either alone or in combination with other drugs as adjuvant therapy.</p

    Long-term AZT Exposure Alters the Metabolic Capacity of Cultured Human Lymphoblastoid Cells

    Get PDF
    The antiretroviral efficacy of 3′-azido-3′-deoxythymidine (AZT) is dependent upon intracellular mono-, di-, and triphosphorylation and incorporation into DNA in place of thymidine. Thymidine kinase 1 (TK-1) catalyzes the first step of this pathway. MOLT-3, human lymphoblastoid cells, were exposed to AZT continuously for 14 passages (P1–P14) and cultured for an additional 14 passages (P15–P28) without AZT. Progressive and irreversible depletion of the enzymatically active form of the TK-1 24-kDa monomer with loss of active protein was demonstrated during P1–P5 of AZT exposure. From P15 to P28, both the 24- and the 48-kDa forms of TK-1 were undetectable and a tetrameric 96-kDa form was present. AZT-DNA incorporation was observed with values of 150, 133, and 108 molecules of AZT/106 nucleotides at the 10μM plasma-equivalent AZT dose at P1, P5, and P14, respectively. An exposure-related increase in the frequency of micronuclei (MN) was observed in cells exposed to either 10 or 800μM AZT during P1–P14. Analysis of the cell cycle profile revealed an accumulation of S-phase cells and a decrease in G1-phase cells during exposure to 800μM AZT for 14 passages. When MOLT-3 cells were grown in AZT-free media (P15–P29), there was a reduction in AZT-DNA incorporation and MN formation; however, TK-1 depletion and the persistence of S-phase delay were unchanged. These data suggest that in addition to known mutagenic mechanisms, cells may become resistant to AZT partially through inactivation of TK-1 and through modulation of cell cycle components

    WR1065 mitigates AZT-ddI-induced mutagenesis and inhibits viral replication

    Get PDF
    The success of nucleoside reverse transcriptase inhibitors (NRTIs) in treating HIV-1 infection and reducing mother-to-child transmission of the virus during pregnancy is accompanied by evidence that NRTIs cause long-term health risks for cancer and mitochondrial disease. Thus, agents that mitigate toxicities of the current combination drug therapies are needed. Previous work had shown that the NRTI-drug pair zidovudine (AZT)–didanosine (ddI) was highly cytotoxic and mutagenic; thus, we conducted preliminary studies to investigate the ability of the active moiety of amifostine, WR1065, to protect against the deleterious effects of this NRTI-drug pair. In TK6 cells exposed to 100 μM AZT-ddI (equimolar) for 3 days with or without 150 μM WR1065, WR1065 enhanced long-term cell survival and significantly reduced AZT-ddI-induced mutations. Follow-up studies were conducted to determine if coexposure to AZT and WR1065 abrogated the antiretroviral efficacy of AZT. In human T-cell blasts infected with HIV-1 in culture, inhibition of p24 protein production was observed in cells treated with 10 μM AZT in the absence or presence of 5–1,000 μM WR1065. Surprisingly, WR1065 alone exhibited dose-related inhibition of HIV-1 p24 protein production. WR1065 also had antiviral efficacy against three species of adenovirus and influenza A and B. Intracellular levels of unbound WR1065 were measured following in vitro/in vivo drug exposure. These pilot study results indicate that WR1065, at low intracellular levels, has cytoprotective and antimutagenic activities against the most mutagenic pair of NRTIs and has broad spectrum anti-viral effects. These findings suggest that the activities have a possible common mode of action that merits further investigation

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore