33 research outputs found
Recommended from our members
Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst
Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO2 as the silicon atom source. The process involves thermal reduction of Si–O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon–carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal–based catalysts
Recommended from our members
Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions
Catalytic hydrosilylation represents a straightforward and atom-efficient methodology for the creation of C-Si bonds. In general, the application of homogeneous platinum complexes prevails in industry and academia. Herein, we describe the first heterogeneous single atom catalysts (SACs), which are conveniently prepared by decorating alumina nanorods with platinum atoms. The resulting stable material efficiently catalyzes hydrosilylation of industrially relevant olefins with high TON (≈105). A variety of substrates is selectively hydrosilylated including compounds with sensitive reducible and other functional groups (N, B, F, Cl). The single atom based catalyst shows significantly higher activity compared to related Pt nanoparticles
Recommended from our members
Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation
Due to the complexity of heterogeneous catalysts, identification of active sites and the ways for their experimental design are not inherently straightforward but important for tailored catalyst preparation. The present study reveals the active sites for efficient C–H bond activation in C1–C4 alkanes over ZrO2 free of any metals or metal oxides usually catalysing this reaction. Quantum chemical calculations suggest that two Zr cations located at an oxygen vacancy are responsible for the homolytic C–H bond dissociation. This pathway differs from that reported for other metal oxides used for alkane activation, where metal cation and neighbouring lattice oxygen form the active site. The concentration of anion vacancies in ZrO2 can be controlled through adjusting the crystallite size. Accordingly designed ZrO2 shows industrially relevant activity and durability in non-oxidative propane dehydrogenation and performs superior to state-of-the-art catalysts possessing Pt, CrOx, GaOx or VOx species
Recommended from our members
Cobalt-based nanoparticles prepared from MOF-carbon templates as efficient hydrogenation catalysts
The development of efficient and selective nanostructured catalysts for industrially relevant hydrogenation reactions continues to be an actual goal of chemical research. In particular, the hydrogenation of nitriles and nitroarenes is of importance for the production of primary amines, which constitute essential feedstocks and key intermediates for advanced chemicals, life science molecules and materials. Herein, we report the preparation of graphene shell encapsulated Co3O4- and Co-nanoparticles supported on carbon by the template synthesis of cobalt-terephthalic acid MOF on carbon and subsequent pyrolysis. The resulting nanoparticles create stable and reusable catalysts for selective hydrogenation of functionalized and structurally diverse aromatic, heterocyclic and aliphatic nitriles, and as well as nitro compounds to primary amines (>65 examples). The synthetic and practical utility of this novel non-noble metal-based hydrogenation protocol is demonstrated by upscaling several reactions to multigram-scale and recycling of the catalyst
Structural Changes of Highly Active Pd/MeOx (Me = Fe, Co, Ni) during Catalytic Methane Combustion
Fe2O3, Co3O4 and NiO nanoparticles were prepared via a citrate method and further functionalized with Pd by impregnation. The pure oxides as well as Pd/Fe2O3, Pd/Co3O4, and Pd/NiO (1, 5 and 10 wt % Pd) were employed for catalytic methane combustion under methane lean (1 vol %)/oxygen rich (18 vol %, balanced with nitrogen) conditions. Already, the pure metal oxides showed a high catalytic activity leading to complete conversion temperature of T100 ≤ 500 °C. H2-TPR (Temperature-programmed reduction) experiments revealed that Pd-functionalized metal oxides exhibited enhanced redox activity compared to the pure oxides leading to improved catalytic combustion activity at lower temperatures. At a loading of 1 wt % Pd, 1Pd/Co3O4 (T100 = 360 °C) outperforms 1Pd/Fe2O3 (T100 = 410 °C) as well as 1Pd/NiO (T100 = 380 °C). At a loading of 10 wt % Pd, T100 could only be slightly reduced in all cases. 1Pd/Co3O4 and 1Pd/NiO show reasonable stability over 70 h on stream at T100. XPS (X-ray photoelectron spectroscopy) and STEM (Scanning transmission electron microscopy) investigations revealed strong interactions between Pd and NiO as well as Co3O4, respectively, leading to dynamic transformations and reoxidation of Pd due to solid state reactions, which leads to the high long-term stability
Tieftemperatur-CO-Oxidation mit -Ionen auf
-Katalysatoren, die durch das “Deposition-Precipitation”-Verfahren hergestellt und ohne Kalzinierung eingesetzt wurden, erreichten in der CO-Oxidation hohe, weitgehend temperaturunabhängige Umsätze. Dagegen erschien nach thermischen Vorbehandlungen, z. B. in He bei 623 K, die Umsatz-Temperatur-Charakteristik in der bekannten S-Form, mit Aktivierungsenergien nahe . Charakterisierung der Proben durch XAFS und HAADF-STEM sowie eine Tieftemperatur-IR-Studie von Adsorption und Oxidation des CO zeigten, dass letzteres am frisch präparierten (gefriergetrockneten) Katalysator, der Gold ausschließlich als enthielt, bereits bei 90 K durch Gasphasensauerstoff oxidiert wurde. Nach Aktivierung im Reaktantenstrom geht der CO-Umsatz bei niedrigen Reaktionstemperaturen auf Zentren zurück, die enthalten, bei höheren Temperaturen wird er von getragen. Nach thermischen Behandlungen wird CO im ganzen Temperaturbereich an Zentren umgesetzt, die ausschließlich metallisches Gold enthalten
How Different Characterization Techniques Elucidate the Nature of the Gold Species in a Polycrystalline Catalyst
-supported gold species were prepared via the deposition-precipitation route, with conservation of the initial speciation by freeze-drying. The structural and electronic properties of the Au species were investigated by X-ray absorption spectroscopy, electron microscopy, and IR spectroscopy of adsorbed CO in four states. Exclusively was deposited on the surface in patches ranging from isolated Au ions to three-dimensional clusters. This paper illustrates in detail the unique contributions of all characterization techniques to this structural model
Virtual Plasmonic Dimers for Ultrasensitive Inspection of Cluster–Surface Coupling
International audienc