92 research outputs found

    NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1

    Get PDF
    AbstractInteraction of natural killer (NK) cells with autologous immature dendritic cells (DCs) results in reciprocal activation; however, the underlying mechanisms are so far elusive. We show here that NK cells trigger immature DCs to polarize and secrete interleukin 18 (IL-18), a cytokine lacking a secretory leader sequence. This occurs through a Ca2+-dependent and tubulin-mediated recruitment of IL-18-containing secretory lysosomes toward the adhering NK cell. Lysosome exocytosis and IL-18 secretion are restricted at the synaptic cleft, thus allowing activation of the interacting NK cells without spreading of the cytokine. In turn, DC-activated NK cells secrete the proinflammatory cytokine high mobility group B1 (HMGB1), which induces DC maturation and protects DCs from lysis. Also HMGB1 is a leaderless cytokine that undergoes regulated secretion. Differently from IL-18, soluble HMGB1 is consistently detected in NK/DC supernatants. These data point to secretion of leaderless cytokines as a key event for the reciprocal activation of NK cells and DCs. DCs initiate NK cell activation by targeted delivery of IL-18, thus instructing NK cells in the absence of adaptive-type cytokines; in turn, activated NK cells release HMGB1, which promotes inflammation and induces DC maturation, thus favoring the onset of the adaptive immune response. (Blood. 2005;106:609-616

    Unexpected episodes of cyanosis in late preterm and term neonates prompted admission to a neonatal care unit

    Get PDF
    Abstract Background We studied late preterm and term infants who were admitted to our neonatal care unit in a tertiary hospital for unexpected episodes of cyanosis that occurred during rooming-in for evaluation of their frequency, most frequent associated diseases, and documentation of the diagnostic clinical approach. Methods We carried out a retrospective study of infants with a gestational age ≥35 weeks who were admitted from the nursery with the diagnosis of cyanosis from January 2009 to December 2016. Exclusion criteria were the occurrence of acrocyanosis and the diagnosis of sudden unexpected postnatal collapse (SUPC). Results We studied 49 infants with a mean gestational age of 38 ± 2 weeks. The frequency of admission for cyanosis was 1.8/1000 live births and was similar (p = 0.167) in late preterm and term infants. The majority of episodes occurred during the first 24 h of life (57%). Only 16 infants (33%) were discharged with a diagnosis, that was mostly (n = 5;10%) gastro-esophageal reflux. Conclusions Unexpected episodes of cyanosis caused admission of 1.8/1000 live births to the neonatal care unit without differences between late preterm and term infants. These episodes occurred mainly during the first day of life and infants were mostly discharged without a known diagnosis

    pH-Controlled assembly of polyelectrolyte layers on silica nanoparticles in concentrated suspension

    Get PDF
    Hypothesis: Preparation of suspensions of nanoparticles (>1 wt%) coated with a polyelectrolyte multilayers is a challenging task because of the risk of flocculation when a polyelectrolyte is added to a suspension of oppositely charged nanoparticles. This situation can be avoided if the charge density of the polymers and particles is controlled during mixing so as to separate mixing and adsorption events. Experiments: The cationic polyethylenimine (PEI) and the anionic carboxymethylcellulose (CMC) were used as weak polyelectrolytes. Polyelectrolyte multilayers build-up was conducted by reducing the charge of one of the components during the addition of the next component. Charge density was controlled by tuning pH. Analysis of the suspension of coated nanoparticles was done by means of dynamic light scattering, electrophoresis and small angle x-ray scattering measurements, while quartz crystal microbalance was used to study the build-up process on flat silica surfaces. Findings: Charge density, controlled through pH, can be used as a tool to avoid flocculation during layer-by-layer deposition of polyelectrolytes on 20 nm silica particles at high concentration (∼40 wt%). When added to silica at pH 3, PEI did not induce flocculation. Adsorption was triggered by raising the pH to 11, pH at which CMC could be added. The pH was then lowered to 3. The process was repeated, and up to five polyelectrolyte layers were deposited on concentrated silica nanoparticles while inducing minimal aggregation

    An Ancient Egyptian Multilayered Polychrome Wooden Sculpture Belonging to the Museo Egizio of Torino: Characterization of Painting Materials and Design of Cleaning Processes by Means of Highly Retentive Hydrogels

    Get PDF
    This contribution focuses on the conservation of an Egyptian wooden sculpture (Inventory Number Cat. 745) belonging to the Museo Egizio of Torino in northwest Italy. A preliminary and interdisciplinary study of constituent painting materials and their layering is here provided. It was conducted by means of a multi-technique approach starting from non-invasive multispectral analysis on the whole object, and subsequently, on selected micro-samples. In particular, visible fluorescence induced by ultraviolet radiation (UVF), infrared reflectography (IRR) and visible--induced infrared luminescence were used on the whole object. The micro-samples were analysed by means of an optical microscope with visible and UV light sources, a scanning electron microscope (SEM) with an energy-dispersive X-ray spectrometer (EDX), Fourier transform infrared (FT-IR) spectrometer, pyrolysis-gas chromatography/mass spectrometer (Py-GC/MS) and micro-particle induced X-ray emission (PIXE). The characterization of the painting materials allowed the detection of Egyptian blue and Egyptian green, and also confirmed the pertinence of the top brown layer to the original materials, which is a key point to design a suitable surface treatment. In fact, due to the water sensitiveness of the original materials, only few options were available to perform cleaning operations on this artwork. To setup the cleaning procedure, we performed several preliminary tests on mockups using dry cleaning materials, commonly used to treat reactive surfaces, and innovative highly water retentive hydrogels, which can potentially limit the mechanical action on the original surface while proving excellent cleaning results. Overall, this study has proved fundamental to increase our knowledge on ancient Egyptian artistic techniques and contribute to hypothesize the possible provenance of the artefact. It also demonstrated that polyvinyl alcohol-based retentive gels allow for the safe and efficient cleaning of extremely water sensitive painted surfaces, as those typical of ancient Egyptian artefacts

    La chimica dei nanocomposti e la loro applicazione al restauro dei manoscritti

    Get PDF
    Cellulose-based artifacts are susceptible to fast degradation due to the presence of detrimental components and to the action of environmental pollutants. As a result, the acidity of pristine material increases, promoting the acid-catalysed depolymerisation of cellulose that alters the mechanical properties of paper. In this paper, the use of innovative dispersions of alkaline earth metal hydroxide nanoparticles will be discussed as a method of counteracting the degradation of paper. The application of the most recent formulations of nanoparticles dispersions for the deacidification of artworks will be highlighted. Finally, the usage of innovative gel formulations for the cleaning of cellulose-based artworks will be discussed
    corecore