13 research outputs found
Uncovering Shakespeare\u27s Sisters in Special Collections and College Archives, Musselman Library
Foreword by Professor Suzanne J. Flynn
I have taught the first-year seminar, Shakespeare’s Sisters, several times, and over the years I have brought the seminar’s students to the Folger Shakespeare Library in Washington, D.C. There, the wonderful librarians have treated the students to a special exhibit of early women’s manuscripts and first editions, beginning with letters written by Elizabeth I and proceeding through important works by seventeen and eighteenth-century women authors such as Aemelia Lanyer, Anne Finch, Aphra Behn, and Mary Wollstonecraft. This year I worked with Carolyn Sautter, the Director of Special Collections and College Archives, to give my 2018 seminar students the opportunity to produce a sequel to the Folger exhibit of early modern women writers. Special Collections houses an impressive array of first editions from the nineteenth and twentieth centuries, many of them acquired from Thomas Y. Cooper, the former editor of the Hanover Evening Sun newspaper, who donated over 1600 items to Musselman Library in 1965.
Working with Kerri Odess-Harnish, we chose first editions of eight significant works of literature written by American and British women from the mid-nineteenth through the mid-twentieth centuries. The students worked in pairs, researching a single book and producing a report that outlines important biographical facts about the author, the book’s publication and reception history, and finally the significance of the book in the years since its publication. We hope that our project will draw attention to the wealth of literary treasures housed in Special Collections at Musselman Library, but especially to these works by eight of “Shakespeare’s Sisters.
The relationships between biotic uniqueness and abiotic uniqueness are context dependent across drainage basins worldwide
[EN] Context: Global change, including land-use change and habitat degradation, has led to a decline in biodiversity, more so in freshwater than in terrestrial ecosystems. However, the research on freshwaters lags behind terrestrial and marine studies, highlighting the need for innovative approaches to comprehend freshwater biodiversity. Objectives: We investigated patterns in the relationships between biotic uniqueness and abiotic environmental uniqueness in drainage basins worldwide. Methods: We compiled high-quality data on aquatic insects (mayflies, stoneflies, and caddisflies at genus-level) from 42 drainage basins spanning four continents. Within each basin we calculated biotic uniqueness (local contribution to beta diversity, LCBD) of aquatic insect assemblages, and four types of abiotic uniqueness (local contribution to environmental heterogeneity, LCEH), categorized into upstream land cover, chemical soil properties, stream site landscape position, and climate. A mixed-effects meta-regression was performed across basins to examine variations in the strength of the LCBD-LCEH relationship in terms of latitude, human footprint, and major continental regions (the Americas versus Eurasia). Results: On average, relationships between LCBD and LCEH were weak. However, the strength and direction of the relationship varied among the drainage basins. Latitude, human footprint index, or continental location did not explain significant variation in the strength of the LCBD-LCEH relationship. Conclusions: We detected strong context dependence in the LCBD-LCEH relationship across the drainage basins. Varying environmental conditions and gradient lengths across drainage basins, land-use change, historical contingencies, and stochastic factors may explain these findings. This context dependence underscores the need for basin-specific management practices to protect the biodiversity of riverine systemsSIOpen Access funding provided by University of Oulu (including Oulu University Hospital). The work for this article was supported by the Academy of Finland’s grant to JHeino for the project GloBioTrends (Grant No. 331957). JGG was funded by the European Union Next Generation EU/PRTR (Grant No. AG325). Work by LMB has been continuously supported by the National Council for Scientifc & Technological Development (CNPq) and Fundação de Amparo Ă Pesquisa do Estado de Goiás (FAPEG) (grants 308974/2020–4 and 465610/2014–5). PB and ZC were fnancially supported by the National Research Development and Innovation Ofce (NKFIH FK 135 136), and PB was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences BO-00106–21. LB thanks the National Council for Scientifc and Technological Development (CNPq) for the Scientifc Initiation Fellowship for JVASS and the productivity fellowship in research to LSB (process nÂş. 305929/2022–4). MC was awarded National Council for Scientifc & Technological Development (CNPq) research productivity grant 304060/2020–8 and received grants (PPM 00104–18, APQ-00261–22) from the Fundação de Amparo Ă Pesquisa do Estado de Minas Gerais. SD and JRGM acknowledge funding by the Leibniz Competition (Grant No. J45/2018) and the German Federal Ministry of Education and Research (BMBF grant agreement number no. 033W034A). DRM was supported by National Council for Scientifc & Technological Development (CNPq) (Grant No. PQ-309763–2020-7). DMPC received a postdoctoral scholarship from P&D Aneel- Cemig GT-611. PH was partially funded by the eLTER PLUS project (Grant Agreement No. 871128). LJ is grateful to 33 Forest, CIKEL Ltd. and Instituto de Floresta Tropical (IFT), Biodiversity Research Consortium Brazil-Norway (BRC), and Norsk Hydro for the fnancial and logistical support for sampling. Brazilian National Council for Scientifc and Technological Development (CNPq) is acknowledged for fnancing the projects and for granting a research productivity fellowship to LJ (304710/2019–9). APJF was supported by Conselho Nacional de Desenvolvimento CientĂfco e TecnolĂłgico (CNPq, Brazil, process no. 449315/2014–2 and 481015/2011–6). RL also received a research productivity fellowship from CNPq (grant # 312531/2021–4). MSL received a postdoctoral scholarship from ANEEL/CEMIG (Project GT-599). Part of feld sampling and aquatic insects processing were funded by Conselho Nacional de Desenvolvimento CientĂfco e TecnolĂłgico (CNPq; 403758/2021–1); Fundação de Amparo Ă Pesquisa do Estado do Amazonas (FAPEAM; Programa Biodiversa) and INCT ADAPTA II – (CNPq: 465540/2014–7; FAPEAM: 062.1187/2017). NH (308970/2019–5) received productivity fellowships from CNPq. RTM received a fellowship from Biodiversa/FAPEAM (01.02.016301.03271/2021–93). KLM acknowledges fnancial support from the Swiss Federal Ofce for the Environment to undertake data collection. Funding for the Segura River basin project was provided by the Seneca Foundation and the European Fund of Regional Development (PLP10/FS/97). FOR was supported by CNPq research grant. TS was partially funded by grant 13/50424–1 and 21/00619–7 from the SĂŁo Paulo Research Foundation (FAPESP), and by grant 309496/2021–7 from the Conselho Nacional de Desenvolvimento CientĂfco e TecnolĂłgico (CNPq). FVN was supported by grant #2021/13299–0, SĂŁo Paulo Research Foundation (FAPESP). ALA acknowledges Brazilian National Council for Scientifc and Technological Development (CNPq, Brazil) for granting a postdoctoral scholarship to her (process number: 167873/2022–9
Redefining Populism Beyond the West
This project focuses on defining populism to include countries beyond the West to show connections between populist characteristics and human rights violations. After gathering research on four different countries and their histories of human rights violations, the author used digital tools such as TimelineJS and StoryMapJS to present findings on WordPress. The website’s audience has the ability to browse countries examined in the study and learn about how governments struggling with large-scale human rights violations tend to share multiple characteristics of populism. This project hopes to bring awareness to countries rarely discussed in the news suffering from oftentimes dangerous government leadership
Digital Humanities Toolkit
The DH Toolkit is an ongoing work-in-progress that is designed to provide information about common Digital Humanities tools, as well as support for issues related to digital projects such as copyright.
The Tools section provides introductions to common digital tools, including ones used for storytelling, data visualization, and content management. The Design section includes information on how to plan a website and best practices to ensure accessibility. The Media section provides information about copyright and how to find images, video, and audio that can be used in digital projects. [excerpt
Supplementary information files for The relationships between biotic uniqueness and abiotic uniqueness are context dependent across drainage basins worldwide
(c) The Authors CC BY 4.0Supplementary files for article The relationships between biotic uniqueness and abiotic uniqueness are context dependent across drainage basins worldwideContextGlobal change, including land-use change and habitat degradation, has led to a decline in biodiversity, more so in freshwater than in terrestrial ecosystems. However, the research on freshwaters lags behind terrestrial and marine studies, highlighting the need for innovative approaches to comprehend freshwater biodiversity.ObjectivesWe investigated patterns in the relationships between biotic uniqueness and abiotic environmental uniqueness in drainage basins worldwide.MethodsWe compiled high-quality data on aquatic insects (mayflies, stoneflies, and caddisflies at genus-level) from 42 drainage basins spanning four continents. Within each basin we calculated biotic uniqueness (local contribution to beta diversity, LCBD) of aquatic insect assemblages, and four types of abiotic uniqueness (local contribution to environmental heterogeneity, LCEH), categorized into upstream land cover, chemical soil properties, stream site landscape position, and climate. A mixed-effects meta-regression was performed across basins to examine variations in the strength of the LCBD-LCEH relationship in terms of latitude, human footprint, and major continental regions (the Americas versus Eurasia).ResultsOn average, relationships between LCBD and LCEH were weak. However, the strength and direction of the relationship varied among the drainage basins. Latitude, human footprint index, or continental location did not explain significant variation in the strength of the LCBD-LCEH relationship.ConclusionsWe detected strong context dependence in the LCBD-LCEH relationship across the drainage basins. Varying environmental conditions and gradient lengths across drainage basins, land-use change, historical contingencies, and stochastic factors may explain these findings. This context dependence underscores the need for basin-specific management practices to protect the biodiversity of riverine systems.</p