14 research outputs found

    Structure-free model-based predictive signal control: A sensitivity analysis on a corridor with spillback

    No full text
    Model-based predictive signal control is a popular method to pro-actively control traffic and to reduce the effects of congestion in urban networks. In combination with structure-free controllers, which adapt signal settings in arbitrary order and combination (no imposed cycles), these predictive control methods have a high potential to increase system performance by adapting to individual vehicle patterns, which are increasingly available due to new technology. However, most of these control methods assume perfect predictions, while in practice there are prediction errors due to various reasons. In this paper, the sensitivity of the system performance to these prediction errors is analyzed, for an urban corridor with spillback. In a microscopic simulator, first the ideal world is created for the structure-free model-based predictive signal controller, in which perfect predictions are made and the controller can reach its optimal performance. Then prediction errors are introduced in this perfect world, distinguished in aggregation errors that arise using a macroscopic prediction model and biases that represent structural errors in the prediction model or in its demand and state input. The effects of these prediction errors on the system performance are analyzed, as a function of the prediction horizon and update frequency of the control system. The results show that, even under errors, longer prediction horizons lead to better performance, up to a certain optimal prediction horizon length. A high update frequency dampens the influence of prediction errors, enabling the structure-free controller to correct mistakes faster. However, there remains a significant performance loss due to aggregation errors and biases in the prediction model, indicating a promising performance gain of more reliable predictions and the incorporation of information on individual vehicles in future control applications. Moreover, for all model quantities one direction of the bias has more impact on the system performance than the other direction, indicating guidelines towards a more robust control system that suffers less from erroneous predictions.Transport and PlanningPolicy Analysi

    Sensitivity Analysis to Define Guidelines for Predictive Control Design

    No full text
    Signalized traffic control is important in traffic management to reduce congestion in urban areas. With recent technological developments, more data have become available to the controllers and advanced state estimation and prediction methods have been developed that use these data. To fully benefit from these techniques in the design of signalized traffic controllers, it is important to look at the quality of the estimated and predicted input quantities in relation to the performance of the controllers. Therefore, in this paper, a general framework for sensitivity analysis is proposed, to analyze the effect of erroneous input quantities on the performance of different types of signalized traffic control. The framework is illustrated for predictive control with different adaptivity levels. Experimental relations between the performance of the control system and the prediction horizon are obtained for perfect and erroneous predictions. The results show that prediction improves the performance of a signalized traffic controller, even in most of the cases with erroneous input data. Moreover, controllers with high adaptivity seem to outperform controllers with low adaptivity, under both perfect and erroneous predictions. The outcome of the sensitivity analysis contributes to understanding the relations between information quality and performance of signalized traffic control. In the design phase of a controller, this insight can be used to make choices on the length of the prediction horizon, the level of adaptivity of the controller, the representativeness of the objective of the control system, and the input quantities that need to be estimated and predicted the most accurately.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Transport and PlanningPolicy Analysi
    corecore