10 research outputs found

    Enhancing evidence-based diabetes and chronic disease control among local health departments: a multi-phase dissemination study with a stepped-wedge cluster randomized trial component

    Get PDF
    Abstract Background The rates of diabetes and prediabetes in the USA are growing, significantly impacting the quality and length of life of those diagnosed and financially burdening society. Premature death and disability can be prevented through implementation of evidence-based programs and policies (EBPPs). Local health departments (LHDs) are uniquely positioned to implement diabetes control EBPPs because of their knowledge of, and focus on, community-level needs, contexts, and resources. There is a significant gap, however, between known diabetes control EBPPs and actual diabetes control activities conducted by LHDs. The purpose of this study is to determine how best to support the use of evidence-based public health for diabetes (and related chronic diseases) control among local-level public health practitioners. Methods/design This paper describes the methods for a two-phase study with a stepped-wedge cluster randomized trial that will evaluate dissemination strategies to increase the uptake of public health knowledge and EBPPs for diabetes control among LHDs. Phase 1 includes development of measures to assess practitioner views on and organizational supports for evidence-based public health, data collection using a national online survey of LHD chronic disease practitioners, and a needs assessment of factors influencing the uptake of diabetes control EBPPs among LHDs within one state in the USA. Phase 2 involves conducting a stepped-wedge cluster randomized trial to assess effectiveness of dissemination strategies with local-level practitioners at LHDs to enhance capacity and organizational support for evidence-based diabetes prevention and control. Twelve LHDs will be selected and randomly assigned to one of the three groups that cross over from usual practice to receive the intervention (dissemination) strategies at 8-month intervals; the intervention duration for groups ranges from 8 to 24 months. Intervention (dissemination) strategies may include multi-day in-person workshops, electronic information exchange methods, technical assistance through a knowledge broker, and organizational changes to support evidence-based public health approaches. Evaluation methods comprise surveys at baseline and the three crossover time points, abstraction of local-level diabetes and chronic disease control program plans and progress reports, and social network analysis to understand the relationships and contextual issues that influence EBPP adoption. Trial registration ClinicalTrial.gov, NCT0321183

    Empagliflozin in Patients with Chronic Kidney Disease

    No full text
    Background The effects of empagliflozin in patients with chronic kidney disease who are at risk for disease progression are not well understood. The EMPA-KIDNEY trial was designed to assess the effects of treatment with empagliflozin in a broad range of such patients. Methods We enrolled patients with chronic kidney disease who had an estimated glomerular filtration rate (eGFR) of at least 20 but less than 45 ml per minute per 1.73 m(2) of body-surface area, or who had an eGFR of at least 45 but less than 90 ml per minute per 1.73 m(2) with a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of at least 200. Patients were randomly assigned to receive empagliflozin (10 mg once daily) or matching placebo. The primary outcome was a composite of progression of kidney disease (defined as end-stage kidney disease, a sustained decrease in eGFR to < 10 ml per minute per 1.73 m(2), a sustained decrease in eGFR of & GE;40% from baseline, or death from renal causes) or death from cardiovascular causes. Results A total of 6609 patients underwent randomization. During a median of 2.0 years of follow-up, progression of kidney disease or death from cardiovascular causes occurred in 432 of 3304 patients (13.1%) in the empagliflozin group and in 558 of 3305 patients (16.9%) in the placebo group (hazard ratio, 0.72; 95% confidence interval [CI], 0.64 to 0.82; P < 0.001). Results were consistent among patients with or without diabetes and across subgroups defined according to eGFR ranges. The rate of hospitalization from any cause was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.86; 95% CI, 0.78 to 0.95; P=0.003), but there were no significant between-group differences with respect to the composite outcome of hospitalization for heart failure or death from cardiovascular causes (which occurred in 4.0% in the empagliflozin group and 4.6% in the placebo group) or death from any cause (in 4.5% and 5.1%, respectively). The rates of serious adverse events were similar in the two groups. Conclusions Among a wide range of patients with chronic kidney disease who were at risk for disease progression, empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes than placebo

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics

    ILC Reference Design Report Volume 3 - Accelerator

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC

    International Linear Collider Reference Design Report Volume 2: PHYSICS AT THE ILC

    No full text
    This article reviews the physics case for the ILC. Baseline running at 500 GeV as well as possible upgrades and options are discussed. The opportunities on Standard Model physics, Higgs physics, Supersymmetry and alternative theories beyond the Standard Model are described.This article reviews the physics case for the ILC. Baseline running at 500 GeV as well as possible upgrades and options are discussed. The opportunities on Standard Model physics, Higgs physics, Supersymmetry and alternative theories beyond the Standard Model are described

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization
    corecore