55 research outputs found

    ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES

    Get PDF
    Air Products set out to investigate the impact of additives on the deposition rate of both ÃÂõCSi and ÃÂñSi-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air ProductsâÃÂàelectronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties

    Optical properties of quasi-tetragonal BiFeO3 thin films

    Get PDF
    Optical transmission spectroscopy and spectroscopic ellipsometry were used to extract the optical properties of an epitaxially grown quasi-tetragonal BiFeO3 thin film in the near infrared to near ultraviolet range. The absorption spectrum is overall blue shifted compared with that of rhombohedral BiFeO3, with an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ~0.4 eV higher than those of the rhombohedral counterpart. We interpret these results in terms of structural strain and local symmetry breaking

    Advanced deposition phase diagrams for guiding Si:H-based multijunction solar cells

    Get PDF
    Abstract Phase diagrams have been established to describe very high frequency (vhf) plasma-enhanced chemical vapor deposition (PECVD) of intrinsic hydrogenated silicon (Si:H) and silicon-germanium alloy (Si 1Àx Ge x :H) thin films on crystalline Si substrates that have been over-deposited with n-type amorphous Si:H (a-Si:H). The Si:H and Si 1Àx Ge x :H films are prepared under conditions used for the top and middle i-layers of high efficiency triple-junction a-Si:H-based n-i-p solar cells. Identical n/i cell structures were co-deposited in this study on textured (stainless steel)/Ag/ZnO which serve as substrate/back-reflectors in order to relate the phase diagrams to the performance parameters of single-junction solar cells. This study has reaffirmed that the highest efficiencies for a-Si:H and a-Si 1Àx Ge x :H solar cells are obtained when the i-layers are prepared under previously-described maximal H 2 dilution conditions. Published by Elsevier B.V

    Bonding in Functionalized Aziridines: Nitrogen-15 and Carbon-13 Studies

    Get PDF
    Two isomeric pairs of cis- and trans-1-cyclohexyl-2-phenyl-3-benzoylaziridines have been synthesized: (1) with a nitrogen-15 labelled nitrogen, and (2) with carbon-13 labelled ring carbons. The carbon-13 to X (where X=nitrogen-15, carbon-13 or hydrogen-I) spin-spin coupling constants were measured and interpreted in terms of stereoelectronic effects. X-ray crystallographic data (earlier determined for cisand trans-1-cyclohexyl-2-phenyl-3-(p-toluyl)aziridines)1 appear in good agreement with the NMR data. Bonding is discussed for the three-ring itself (NMR studies) and for its substituents (X-ray studies). It is concluded that stereochemical interaction of the Van der Waals type is an important determinant of aziridine bond length. Three-ring to carbonyl hyperconjugation is correlated with stereoelectronic interactions in the trans isomer

    Optical band gap of BiFeO3 grown by molecular-beam epitaxy

    Get PDF
    BiFeO3 thin films have been deposited on (001) SrTiO3 substrates by adsorption-controlled reactive molecular-beam epitaxy. For a given bismuth overpressure and oxygen activity, single-phase BiFeO3 films can be grown over a range of deposition temperatures in accordance with thermodynamic calculations. Four-circle x-ray diffraction reveals phase-pure, epitaxial films with w rocking curve full width at half maximum values as narrow as 29 arc sec (0.008°). Multiple-angle spectroscopic ellipsometry reveals a direct optical band gap at 2.74 eV for stoichiometric as well as 5% bismuth-deficient single-phase BiFeO3 films

    Adsorption-controlled growth of BiVO4 by molecular-beam epitaxy

    Get PDF
    Single-phase epitaxial films of the monoclinic polymorph of BiVO4 were synthesized by reactive molecular-beam epitaxy under adsorption-controlled conditions. The BiVO4 films were grown on (001) yttria-stabilized cubic zirconia (YSZ) substrates. Four-circle x-ray diffraction, scanning transmission electron microscopy (STEM), and Raman spectroscopy confirm the epitaxial growth of monoclinic BiVO4 with an atomically abrupt interface and orientation relationship (001)BiVO4 parallel to (001)(YSZ) with [100]BiVO4 parallel to [100](YSZ). Spectroscopic ellipsometry, STEM electron energy loss spectroscopy (STEM-EELS), and x-ray absorption spectroscopy indicate that the films have a direct band gap of 2.5 +/- 0.1 eV

    Spin-Charge-Lattice Coupling through Resonant Multi-Magnon Excitations in Multiferroic BiFeO3

    Full text link
    Spin-charge-lattice coupling mediated by multi-magnon processes is demonstrated in multiferroic BiFeO3. Experimental evidence of two and three magnons excitations as well as multimagnon coupling at electronic energy scales and high temperatures are reported. Temperature dependent Raman experiments show up to five resonant enhancements of the 2-magnon excitation below the Neel temperature. These are shown to be collective interactions between on-site Fe d-d electronic resonance, phonons and multimagnonsComment: 11 pages including figure

    Jacobsen syndrome

    Get PDF
    Jacobsen syndrome is a MCA/MR contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. To date, over 200 cases have been reported. The prevalence has been estimated at 1/100,000 births, with a female/male ratio 2:1. The most common clinical features include pre- and postnatal physical growth retardation, psychomotor retardation, and characteristic facial dysmorphism (skull deformities, hypertelorism, ptosis, coloboma, downslanting palpebral fissures, epicanthal folds, broad nasal bridge, short nose, v-shaped mouth, small ears, low set posteriorly rotated ears). Abnormal platelet function, thrombocytopenia or pancytopenia are usually present at birth. Patients commonly have malformations of the heart, kidney, gastrointestinal tract, genitalia, central nervous system and skeleton. Ocular, hearing, immunological and hormonal problems may be also present. The deletion size ranges from ~7 to 20 Mb, with the proximal breakpoint within or telomeric to subband 11q23.3 and the deletion extending usually to the telomere. The deletion is de novo in 85% of reported cases, and in 15% of cases it results from an unbalanced segregation of a familial balanced translocation or from other chromosome rearrangements. In a minority of cases the breakpoint is at the FRA11B fragile site. Diagnosis is based on clinical findings (intellectual deficit, facial dysmorphic features and thrombocytopenia) and confirmed by cytogenetics analysis. Differential diagnoses include Turner and Noonan syndromes, and acquired thrombocytopenia due to sepsis. Prenatal diagnosis of 11q deletion is possible by amniocentesis or chorionic villus sampling and cytogenetic analysis. Management is multi-disciplinary and requires evaluation by general pediatrician, pediatric cardiologist, neurologist, ophthalmologist. Auditory tests, blood tests, endocrine and immunological assessment and follow-up should be offered to all patients. Cardiac malformations can be very severe and require heart surgery in the neonatal period. Newborns with Jacobsen syndrome may have difficulties in feeding and tube feeding may be necessary. Special attention should be devoted due to hematological problems. About 20% of children die during the first two years of life, most commonly related to complications from congenital heart disease, and less commonly from bleeding. For patients who survive the neonatal period and infancy, the life expectancy remains unknown
    corecore