21 research outputs found

    Preferential Targeting of Conserved Gag Regions after Vaccination with a Heterologous DNA prime - Modified Vaccinia Ankara (MVA) boost HIV-1 vaccine regimen

    Get PDF
    Prime-boost vaccination strategies against HIV-1 often include multiple variants for a given immunogen for better coverage of the extensive viral diversity. To study the immunologic effects of this approach, we characterized breadth, phenotype, function and specificity of Gag-specific T cells induced by a DNA-prime Modified Vaccinia Ankara (MVA)-boost vaccination strategy, which uses mismatched Gag immunogens in the TamoVac 01 phase IIa trial. Healthy Tanzanian volunteers received three injections of the DNA-SMI vaccine encoding for a subtype B and AB-recombinant Gagp37 and two vaccinations with MVA-CMDR encoding subtype A Gagp55 Gag-specific T-cell responses were studied in 42 vaccinees using fresh peripheral blood mononuclear cells. After the first MVA-CMDR boost, vaccine-induced IFN-γ(+) Gag-specific T cell responses were dominated by CD4(+) T cells (compared to CD8(+) T cells, p<0.001) that co-expressed IL-2 (66.4%) and/or TNFα (63.7%). A median of 3 antigenic regions were targeted with a higher median response magnitude to Gagp24 regions - more conserved between prime and boost - as compared to regions within Gagp15 (not primed) and Gagp17 (less conserved, both p<0.0001). Four regions within Gagp24 were each targeted by 45% to 74% of vaccinees upon restimulation with DNA-SMI-Gag matched peptides. The response rate to individual antigenic regions correlated with the sequence homology between the MVA and DNA Gag encoded immunogens (p=0.04, r(2)=0.47). In summary, after the first MVA-CMDR boost, the sequence-mismatched DNA-prime MVA-boost vaccine strategy induced a Gag-specific T cell response that was dominated by polyfunctional CD4(+) T cells and that targeted multiple antigenic regions within the conserved Gagp24 Protein.IMPORTANCE Genetic diversity is a major challenge for the design of vaccines against variable viruses. While including multiple variants for a given immunogen in prime-boost vaccination strategies is one approach that aims to improve coverage for global virus variants, the immunologic consequences of this strategy have been poorly defined so far. It is unclear whether inclusion of multiple variants in prime-boost vaccination strategies improves recognition of variant viruses by T cells and by which mechanisms this would be achieved; either by improved cross-recogniton of multiple variants for a given antigenic region or rather through preferential targeting of antigenic regions more conserved between prime and boost. Engineering vaccines to induce adaptive immune responses that preferentially target conserved antigenic regions of viral vulnerability might facilitate better immune control after preventive and therapeutic vaccination for HIV and for other variable viruses

    Phase II trial of ipilimumab in melanoma patients with preexisting humoural immune response to NY-ESO-1

    No full text
    Background: Immune checkpoint therapy has dramatically changed treatment options in patients with metastatic melanoma. However, a relevant part of patients still does not respond to treatment. Data regarding the prognostic or predictive significance of preexisting immune responses against tumour antigens are conflicting. Retrospective data suggested a higher clinical benefit of ipilimumab in melanoma patients with preexisting NY-ESO-1-specific immunity. Patients and methods: Twenty-five patients with previously untreated or treated metastatic melanoma and preexisting humoural immune response against NY-ESO-1 received ipilimumab at a dose of 10 mg/kg in week 1, 4, 7, 10 followed by 3-month maintenance treatment for a maximum of 48 weeks. Primary endpoint was the disease control rate (irCR, irPR or irSD) according to immune-related response criteria (irRC). Secondary endpoints included the disease control rate according to RECIST criteria, progression-free survival and overall survival (OS). Humoural and cellular immune responses against NY-ESO-1 were analysed from blood samples. Results: Disease control rate according to irRC was 52%, irPR was observed in 36% of patients. Progression-free survival according to irRC was 7.8 months, according to RECIST criteria it was 2.9 months. Median OS was 22.7 months; the corresponding 1-year survival rate was 66.8%. Treatment-related grade 3 AEs occurred in 36% with no grade 4-5 AEs. No clear association was found between the presence of NY-ESO-1-specific cellular or humoural immune responses and clinical activity. Conclusion: Ipilimumab demonstrated clinically relevant activity within this biomarker-defined population. NY-ESO-1 positivity, as a surrogate for a preexisting immune response against tumour antigens, might help identifying patients with a superior outcome from immune checkpoint blockade. (C) 2017 Elsevier Ltd. All rights reserved

    Priming with a Simplified Intradermal HIV-1 DNA Vaccine Regimen followed by Boosting with Recombinant HIV-1 MVA Vaccine Is Safe and Immunogenic: A Phase IIa Randomized Clinical Trial

    Get PDF
    <div><p>Background</p><p>Intradermal priming with HIV-1 DNA plasmids followed by HIV-1MVA boosting induces strong and broad cellular and humoral immune responses. In our previous HIVIS-03 trial, we used 5 injections with 2 pools of HIV-DNA at separate sites for each priming immunization. The present study explores whether HIV-DNA priming can be simplified by reducing the number of DNA injections and administration of combined versus separated plasmid pools.</p><p>Methods</p><p>In this phase IIa, randomized trial, priming was performed using 5 injections of HIV-DNA, 1000 μg total dose, (3 Env and 2 Gag encoding plasmids) compared to two “simplified” regimens of 2 injections of HIV-DNA, 600 μg total dose, of Env- and Gag-encoding plasmid pools with each pool either administered separately or combined. HIV-DNA immunizations were given intradermally at weeks 0, 4, and 12. Boosting was performed intramuscularly with 10<sup>8</sup> pfu HIV-MVA at weeks 30 and 46.</p><p>Results</p><p>129 healthy Tanzanian participants were enrolled. There were no differences in adverse events between the groups. The proportion of IFN-γ ELISpot responders to Gag and/or Env peptides after the second HIV-MVA boost did not differ significantly between the groups primed with 2 injections of combined HIV-DNA pools, 2 injections with separated pools, and 5 injections with separated pools (90%, 97% and 97%). There were no significant differences in the magnitude of Gag and/or Env IFN-γ ELISpot responses, in CD4+ and CD8+ T cell responses measured as IFN-γ/IL-2 production by intracellular cytokine staining (ICS) or in response rates and median titers for binding antibodies to Env gp160 between study groups.</p><p>Conclusions</p><p>A simplified intradermal vaccination regimen with 2 injections of a total of 600 μg with combined HIV-DNA plasmids primed cellular responses as efficiently as the standard regimen of 5 injections of a total of 1000 μg with separated plasmid pools after boosting twice with HIV-MVA.</p><p>Trial Registration</p><p>World Health Organization International Clinical Trials Registry Platform <a href="http://apps.who.int/trialsearch/Trial2.aspx?TrialID=PACTR2010050002122368" target="_blank">PACTR2010050002122368</a></p></div
    corecore