5 research outputs found

    Peculiarities of SDS-PAGE of Titin/Connectin

    Get PDF
    Titin (also known as connectin) is a giant elastic protein of striated and smooth muscles of vertebrates. The molecular weight of its isoforms is 3.0–3.7 MDa in striated muscles and 0.5–2.0 MDa in smooth muscles. Titin was discovered 40 years ago using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). At the present time, this method has not lost its relevance but has undergone a number of modifications that improve visualization of giant titin isoforms in the gel. This chapter provides historical insights into the technical aspects of the electrophoresis methods used to identify titin and its isoforms. We focus on the peculiarities of the technique because of which titin molecules remain intact and its high molecular weight isoforms can be visualized. Electrophoretic testing of changes in titin content in muscles can be used in medical practice to diagnose pathological processes and evaluate effective approaches to their correction

    Order-disorder structural transitions in synthetic filaments of fast and slow skeletal muscle myosins under relaxing and activating conditions.

    No full text
    In the previous study (Podlubnaya et al., 1999, J. Struc. Biol. 127, 1-15) Ca2+-induced reversible structural transitions in synthetic filaments of pure fast skeletal and cardiac muscle myosins were observed under rigor conditions (-Ca2+/+ Ca2+). In the present work these studies have been extended to new more order-producing conditions (presence of ATP in the absence of Ca2+) aimed at arresting the relaxed structure in synthetic filaments of both fast and slow skeletal muscle myosin. Filaments were formed from column-purified myosins (rabbit fast skeletal muscle and rabbit slow skeletal semimebranosus proprius muscle). In the presence of 0.1 mM free Ca2+, 3 mM Mg2+ and 2 mM ATP (activating conditions) these filaments had a spread structure with a random arrangement of myosin heads and subfragments 2 protruding from the filament backbone. Such a structure is indistinguishable from the filament structures observed previously for fast skeletal, cardiac (see reference cited above) and smooth (Podlubnaya et al., 1999, J. Muscle Res. Cell Motil. 20, 547-554) muscle myosins in the presence of 0.1 mM free Ca2+. In the absence of Ca2+ and in the presence of ATP (relaxing conditions) the filaments of both studied myosins revealed a compact ordered structure. The fast skeletal muscle myosin filaments exhibited an axial periodicity of about 14.5 nm and which was much more pronounced than under rigor conditions in the absence of Ca2+ (see the first reference cited). The slow skeletal muscle myosin filaments differ slightly in their appearance from those of fast muscle as they exhibit mainly an axial repeat of about 43 nm while the 14.5 nm repeat is visible only in some regions. This may be a result of a slightly different structural properties of slow skeletal muscle myosin. We conclude that, like other filaments of vertebrate myosins, slow skeletal muscle myosin filaments also undergo the Ca2+-induced structural order-disorder transitions. It is very likely that all vertebrate muscle myosins possess such a property
    corecore