7 research outputs found

    On Properties of Magneto-dielectric Composites in the Effective Medium Approximation

    Get PDF
    The development of ultra-broadband composite absorbers of electromagnetic waves depends largely on optimal combination of the medium characteristics that determine their absorption capacity and conditions for impedance matching and destructive interference. It is possible to achieve a higher absorption level in a wider frequency band by combining a variety of mechanisms enhancing the loss of electromagnetic field energy, for example, by combining specific constituents in a composite matrix. The analysis of various mix-ing models for constituent parameters is carried out in the effective medium approximation for ferrite-dielectric composites. It appears that the standard mixing rules do not explain the increase in the effective permittivity of ferrite composites in comparison with that of bulk ferrites. The proposed mechanism of such increase is based on the conductive properties of the ferrite granules and the equivalent capacitance effect. The developed model of permittivity calculation is based on the equivalent capacitor circuits and gives a satisfactory agreement with the experimental data. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3640

    On Properties of Magneto-dielectric Composites in the Effective Medium Approximation

    Get PDF
    The development of ultra-broadband composite absorbers of electromagnetic waves depends largely on optimal combination of the medium characteristics that determine their absorption capacity and conditions for impedance matching and destructive interference. It is possible to achieve a higher absorption level in a wider frequency band by combining a variety of mechanisms enhancing the loss of electromagnetic field energy, for example, by combining specific constituents in a composite matrix. The analysis of various mix-ing models for constituent parameters is carried out in the effective medium approximation for ferrite-dielectric composites. It appears that the standard mixing rules do not explain the increase in the effective permittivity of ferrite composites in comparison with that of bulk ferrites. The proposed mechanism of such increase is based on the conductive properties of the ferrite granules and the equivalent capacitance effect. The developed model of permittivity calculation is based on the equivalent capacitor circuits and gives a satisfactory agreement with the experimental data. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3640

    Optical and magnetic properties of Al/NiFe and Al/Ge/NiFe nanosized films

    No full text
    Nanosized films with ferromagnetic layers are widely used in nanoelectronics, sensor systems and telecommunication. The physical and magnetic properties of nanolayers may significantly differ from those known for bulk materials due to fine crystalline structure, influence of interfaces, roughness, and diffusion. In this work, we are employing a spectral ellipsometry method, magneto-optical Kerr magnetometry and VSM to investigate the impact of layer thickness on the optical constants and magnetization processes for two and three layer films of the type Al/NiFe/sitall, Al/Ge/NiFe/sitall on sitall substrate for different thickness of the upper Al layers. The refractive indexes of two layer films are well resolved by spectral ellipsometry demonstrating their good quality. Modelling data for three-layer films show considerable discrepancy with the experiment, which can be related to a stronger influence of interfaces. The magnetization processes of two-layer films weakly depend on the type and thickness of the upper non-ferromagnetic layers. However, the coercivity of three layer films may significantly change with the thickness of the upper layer: more than twice when the thickness of Al layer increases from 4 to 20 nm

    Optical and magnetic properties of Al/NiFe and Al/Ge/NiFe nanosized films

    No full text
    Nanosized films with ferromagnetic layers are widely used in nanoelectronics, sensor systems and telecommunication. The physical and magnetic properties of nanolayers may significantly differ from those known for bulk materials due to fine crystalline structure, influence of interfaces, roughness, and diffusion. In this work, we are employing a spectral ellipsometry method, magneto-optical Kerr magnetometry and VSM to investigate the impact of layer thickness on the optical constants and magnetization processes for two and three layer films of the type Al/NiFe/sitall, Al/Ge/NiFe/sitall on sitall substrate for different thickness of the upper Al layers. The refractive indexes of two layer films are well resolved by spectral ellipsometry demonstrating their good quality. Modelling data for three-layer films show considerable discrepancy with the experiment, which can be related to a stronger influence of interfaces. The magnetization processes of two-layer films weakly depend on the type and thickness of the upper non-ferromagnetic layers. However, the coercivity of three layer films may significantly change with the thickness of the upper layer: more than twice when the thickness of Al layer increases from 4 to 20 nm
    corecore