273 research outputs found

    Vru (Sub0144) controls expression of proven and putative virulence determinants and alters the ability of Streptococcus uberis to cause disease in dairy cattle

    Get PDF
    The regulation and control of gene expression in response to differing environmental stimuli is crucial for successful pathogen adaptation and persistence. The regulatory gene vru of Streptococcus uberis encodes a stand-alone response regulator with similarity to the Mga of group A Streptococcus. Mga controls expression of a number of important virulence determinants. Experimental intramammary challenge of dairy cattle with a mutant of S. uberis carrying an inactivating lesion in vru showed reduced ability to colonize the mammary gland and an inability to induce clinical signs of mastitis compared with the wild-type strain. Analysis of transcriptional differences of gene expression in the mutant, determined by microarray analysis, identified a number of coding sequences with altered expression in the absence of Vru. These consisted of known and putative virulence determinants, including Lbp (Sub0145), SclB (Sub1095), PauA (Sub1785) and hasA (Sub1696)

    Relationship between Expression of the Family of M Proteins and Lipoteichoic Acid to Hydrophobicity and Biofilm Formation in Streptococcus pyogenes

    Get PDF
    Background: Hydrophobicity is an important attribute of bacteria that contributes to adhesion and biofilm formation. Hydrophobicity of Streptococcus pyogenes is primarily due to lipoteichoic acid (LTA) on the streptococcal surface but the mechanism(s) whereby LTA is retained on the surface is poorly understood. In this study, we sought to determine whether members of the M protein family consisting of Emm (M protein), Mrp (M-related protein), Enn (an M-like protein), and the streptococcal protective antigen (Spa) are involved in anchoring LTA in a manner that contributes to hydrophobicity of the streptococci and its ability to form biofilms. Methodology/Principal Findings: Isogenic mutants defective in expression of emm, mrp, enn, and/or spa genes of eight different serotypes and their parental strains were tested for differences in LTA bound to surface proteins, LTA released into the culture media, and membrane-bound LTA. The effect of these mutations on the ability of streptococci to form a hydrophobic surface and to generate biofilms was also investigated. A recombinant strain overexpressing Emm1 was also engineered and similarly tested. The serotypes tested ranged from those that express only a single M protein gene to those that express two or three members of the M protein family. Overexpression of Emm1 led to enhanced hydrophobicity an

    Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae

    Get PDF
    EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays

    Impact of Orthologous Gene Replacement on the Circuitry Governing Pilus Gene Transcription in Streptococci

    Get PDF
    The evolutionary history of several genes of the bacterial pathogen Streptococcus pyogenes strongly suggests an origin in another species, acquired via replacement of the counterpart gene (ortholog) following a recombination event. An example of orthologous gene replacement is provided by the nra/rofA locus, which encodes a key regulator of pilus gene transcription. Of biological importance is the previous finding that the presence of the nra- and rofA-lineage alleles, which are approximately 35% divergent, correlates strongly with genetic markers for streptococcal infection at different tissue sites in the human host (skin, throat).In this report, the impact of orthologous gene replacement targeting the nra/rofA locus is experimentally addressed. Replacement of the native nra-lineage allele with a rofA-lineage allele, plus their respective upstream regions, preserved the polarity of Nra effects on pilus gene transcription (i.e., activation) in the skin strain Alab49. Increased pilus gene transcription in the rofA chimera correlated with a higher rate of bacterial growth at the skin. The transcriptional regulator MsmR, which represses nra and pilus gene transcription in the Alab49 parent strain, has a slight activating effect on pilus gene expression in the rofA chimera construct.Data show that exchange of orthologous forms of a regulatory gene is stable and robust, and pathogenicity is preserved. Yet, new phenotypes may also be introduced by altering the circuitry within a complex transcriptional regulatory network. It is proposed that orthologous gene replacement via interspecies exchange is an important mechanism in the evolution of highly recombining bacteria such as S. pyogenes

    Allelic replacement of the streptococcal cysteine protease SpeB in a Δsrv mutant background restores biofilm formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group A <it>Streptococcus </it>(GAS) is a Gram-positive human pathogen that is capable of causing a wide spectrum of human disease. Thus, the organism has evolved to colonize a number of physiologically distinct host sites. One such mechanism to aid colonization is the formation of a biofilm. We have recently shown that inactivation of the streptococcal regulator of virulence (Srv), results in a mutant strain exhibiting a significant reduction in biofilm formation. Unlike the parental strain (MGAS5005), the streptococcal cysteine protease (SpeB) is constitutively produced by the <it>srv </it>mutant (MGAS5005Δ<it>srv</it>) suggesting Srv contributes to the control of SpeB production. Given that SpeB is a potent protease, we hypothesized that the biofilm deficient phenotype of the <it>srv </it>mutant was due to the constitutive production of SpeB. In support of this hypothesis, we have previously demonstrated that treating cultures with E64, a commercially available chemical inhibitor of cysteine proteases, restored the ability of MGAS5005Δ<it>srv </it>to form biofilms. Still, it was unclear if the loss of biofilm formation by MGAS5005Δ<it>srv </it>was due only to the constitutive production of SpeB or to other changes inherent in the <it>srv </it>mutant strain. To address this question, we constructed a Δ<it>srv</it>Δ<it>speB </it>double mutant through allelic replacement (MGAS5005Δ<it>srv</it>Δ<it>speB</it>) and tested its ability to form biofilms <it>in vitro</it>.</p> <p>Findings</p> <p>Allelic replacement of <it>speB </it>in the <it>srv </it>mutant background restored the ability of this strain to form biofilms under static and continuous flow conditions. Furthermore, addition of purified SpeB to actively growing wild-type cultures significantly inhibited biofilm formation.</p> <p>Conclusions</p> <p>The constitutive production of SpeB by the <it>srv </it>mutant strain is responsible for the significant reduction of biofilm formation previously observed. The double mutant supports a model by which Srv contributes to biofilm formation and/or dispersal through regulation of <it>speB</it>/SpeB.</p
    corecore