7 research outputs found

    Neural tube defects in four Shetland sheepdog puppies: clinical characterisation and computed tomography investigation

    Get PDF
    Case report Here we report on the occurrence of neural tube defects in four related Shetland sheepdog puppies. Neural tube defects present as a range of congenital malformations affecting the spine, skull and associated structures. Despite the severity of these malformations and their relatively high prevalence in humans, the aetiology is not well understood. It is even less well characterised in veterinary medicine. Affected puppies were investigated using computed tomography and then post-mortem examination. Computed tomography identified a range of brain and spine abnormalities in the affected animals, including caudal anencephaly, encephalocele, spina bifida and malformed vertebrae. Other observed abnormalities in these puppies, including cranioschisis, atresia ani and hydrocephalus, may be secondary to, or associated with, the primary neural tube defects identified. Conclusion This case report describes multiple related cases of neural tube defects in an Australian cohort of dogs. This study also highlights the potential of advanced imaging techniques in identifying congenital anomalies in stillborn and neonatal puppies. Further research is required to investigate the aetiology of neural tube defects in this group of affected Shetland sheepdogs

    Quality and Quantity of Protein Intake Influence Incidence of Type 2 Diabetes Mellitus in Coronary Heart Disease Patients: From the CORDIOPREV Study

    Get PDF
    Evidence suggests that enriching a diet with plant-based proteins could reduce the risk of developing type 2 diabetes mellitus. In the present work, we evaluated the association between the change in plant protein intake (adjusted by energy) and incidence of type 2 diabetes mellitus in patients with coronary heart disease from the CORDIOPREV (coronary diet intervention with olive oil and cardiovascular prevention) study. At baseline and during the follow-up, patients underwent medical examination and blood and oral glucose tolerance tests. Information on patient’s dietary intake was gathered by registered dietitians using a validated food frequency questionnaire. A total of 106 out of 436 nondiabetic patients at baseline developed type 2 diabetes mellitus after a median follow-up of 60 months. Cox regression analyses showed that patients who belonged to the group that increased plant protein intake exhibited a lower risk of developing the disease (HR = 0.64, (0.43–0.96)). Changes in plant protein intake were positively correlated with changes in carbohydrates, fibre, and legumes intake and negatively correlated with changes in saturated fatty acids intake. Results of the present study support the need of improving diet with plant-based proteins to prevent the onset of type 2 diabetes mellitus

    Use of gadoxetic acid for computed tomographic cholangiography in healthy dogs

    No full text
    OBJECTIVE To evaluate the effect of gadoxetic acid (contrast) dose on biliary tract enhancement, determine the optimal time after contrast injection for CT image acquisition, and assess the feasibility of CT cholangiography in sedated dogs. ANIMALS 8 healthy dogs. PROCEDURES The study had 2 parts. In part 1, 4 dogs were anesthetized and underwent CT cholangiography twice. Gadoxetic acid was administered IV at a low dose (0.025 mmol/kg) for the first procedure and high dose (0.3 mmol/ kg) for the second procedure. Serial CT scans were obtained at predetermined times after contrast injection. In part 2, 4 dogs were sedated and underwent CT angiography 85 minutes after IV administration of the high contrast dose. Contrast enhancement of the biliary tract on all scans was objectively assessed by measurement of CT attenuation and qualitatively assessed by use of a subjective 4-point scoring system by 3 independent reviewers. All measurements were compared over time and between contrast doses for the dogs of part 1. Subjective measurements were compared between the sedated dogs of part 2 and anesthetized dogs of part 1. RESULTS Enhancement of the biliary tract was positively associated with contrast dose and time after contrast injection. Optimal enhancement was achieved 65 minutes after contrast injection. Subjective visualization of most biliary structures did not differ significantly between sedated and anesthetized dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated CT cholangiography with gadoxetic acid was feasible in sedated dogs. The high contrast dose provided better visualization of biliary structures than the low dose; CT scans should be obtained 65 minutes after contrast injection

    miR-223-3p as a Potential Biomarker and Player for Adipose Tissue Dysfunction Preceding Type 2 Diabetes Onset

    No full text
    Circulating microRNAs (miRNAs) have been proposed as biomarkers for type 2 diabetes (T2D). Adipose tissue (AT), for which dysfunction is widely associated with T2D development, has been reported as a major source of circulating miRNAs. However, the role of dysfunctional AT in the altered pattern of circulating miRNAs associated with T2D onset remains unexplored. Herein, we investigated the relationship between T2D-associated circulating miRNAs and AT function, as well as the role of preadipocytes and adipocytes as secreting cells of candidate circulating miRNAs. Among the plasma miRNAs related to T2D onset in the CORonary Diet Intervention with Olive oil and cardiovascular PREVention (CORDIOPREV) cohort, baseline miR-223-3p levels (diminished in patients who next developed T2D [incident-T2D]) were significantly related to AT insulin resistance (IR). Baseline serum from incident-T2D participants induced inflammation and IR in 3T3-L1 adipocytes. We demonstrated that tumor necrosis factor (TNF)-alpha inhibited miR-223-3p secretion while enhancing miR-223-3p intracellular accumulation in 3T3-L1 (pre)adipocytes. Overexpression studies showed that an intracellular increase of miR-223-3p impaired glucose and lipid metabolism in these cells. Our findings provide mechanistic insights into the alteration of circulating miRNAs preceding T2D, unveiling both preadipocytes and adipocytes as miR-223-3p-secreting cells and suggesting that inflammation promotes miR-223-3p intracellular accumulation, which might contribute to (pre)adipocyte dysfunction and body metabolic dysregulation

    miR-223-3p as a potential biomarker and player for adipose tissue dysfunction preceding type 2 diabetes onset

    No full text
    Circulating microRNAs (miRNAs) have been proposed as biomarkers for type 2 diabetes (T2D). Adipose tissue (AT), for which dysfunction is widely associated with T2D development, has been reported as a major source of circulating miRNAs. However, the role of dysfunctional AT in the altered pattern of circulating miRNAs associated with T2D onset remains unexplored. Herein, we investigated the relationship between T2D-associated circulating miRNAs and AT function, as well as the role of preadipocytes and adipocytes as secreting cells of candidate circulating miRNAs. Among the plasma miRNAs related to T2D onset in the CORonary Diet Intervention with Olive oil and cardiovascular PREVention (CORDIOPREV) cohort, baseline miR-223-3p levels (diminished in patients who next developed T2D [incident-T2D]) were significantly related to AT insulin resistance (IR). Baseline serum from incident-T2D participants induced inflammation and IR in 3T3-L1 adipocytes. We demonstrated that tumor necrosis factor (TNF)-alpha inhibited miR-223-3p secretion while enhancing miR-223-3p intracellular accumulation in 3T3-L1 (pre)adipocytes. Overexpression studies showed that an intracellular increase of miR-223-3p impaired glucose and lipid metabolism in these cells. Our findings provide mechanistic insights into the alteration of circulating miRNAs preceding T2D, unveiling both preadipocytes and adipocytes as miR-223-3p-secreting cells and suggesting that inflammation promotes miR-223-3p intracellular accumulation, which might contribute to (pre)adipocyte dysfunction and body metabolic dysregulation

    Mechanical destabilization induced by controlled annular incision of the intervertebral disc dysregulates metalloproteinase expression and induces disc degeneration

    No full text
    Study Design: An investigation of mechanical destabilization of the lumbar ovine intervertebral disc (IVD) inducing IVD degeneration (IVDD) as determined by multiparameter outcome measures (magnetic resonance imaging [MRI], IVD composition, biomechanical testing, gene profiling, immunohistochemistry, and immunoblotting). Objective: To assess the effect of IVD mechanical destabilization on matrix protein and metalloproteinase gene expression to investigate the pathophysiological mechanisms of lumbar IVDD. Summary of Background Data: Several earlier studies have used annular transection to induce IVDD in sheep, but none have optimized or validated the most appropriate lesion size. Methods: The annulus fibrosus (AF) incision inducing maximal change in IVD biomechanics was applied to L1-L2, L3-L4, and L5-L6 discs in vivo to compare with a sham procedure at 3 months post operation. IVDs were evaluated by MRI, biomechanics, histopathology, proteoglycan and collagen content, gene expression, and aggrecan proteolysis by Western blotting. Results: Significant changes were observed in lesion (6 × 20 mm 2) compared with sham IVDs at 3 months post operation: reduced disc height on MRI; increased neutral zone in biomechanical testing; depleted proteoglycan and collagen content in the nucleus pulposus (NP) and lesion half of the AF but not in the contralateral AF; increased messenger RNA for collagen I and II, aggrecan, versican, perlecan, matrix metalloproteinase (MMP)-1 & 13, and ADAMTS-5, in the lesion-site AF and NP but not in the contralateral AF. ADAMTS-4 messenger RNA was increased in the lesion-site AF but decreased in the NP. Despite an upregulation in MMPs, there was no change in MMP- or ADAMTS-generated aggrecan neoepitopes in any region of the IVD in lesion or sham discs. Conclusion: Lumbar IVDD was reproducibly induced with a 6 × 20 mm 2 annular lesion, with focal dysregulation of MMP gene expression, cell cloning in the inner AF, loss of NP aggrecan, and disc height. Loss of aggrecan from the NP was not attributable to increased proteolysis in the interglobular domain by MMPs or ADAMTS.8 page(s
    corecore