185 research outputs found

    Perturbed Defects and T-Systems in Conformal Field Theory

    Full text link
    Defect lines in conformal field theory can be perturbed by chiral defect fields. If the unperturbed defects satisfy su(2)-type fusion rules, the operators associated to the perturbed defects are shown to obey functional relations known from the study of integrable models as T-systems. The procedure is illustrated for Virasoro minimal models and for Liouville theory.Comment: 24 pages, 13 figures; v2: typos corrected, in particular in (2.10) and app. A.2, version to appear in J.Phys.

    Dynamic expression of genes associated with schizophrenia and bipolar disorder across development

    Get PDF
    Common genetic variation contributes a substantial proportion of risk for both schizophrenia and bipolar disorder. Furthermore, there is evidence of significant, but not complete, overlap in genetic risk between the two disorders. It has been hypothesised that genetic variants conferring risk for these disorders do so by influencing brain development, leading to the later emergence of symptoms. The comparative profile of risk gene expression for schizophrenia and bipolar disorder across development over different brain regions however remains unclear. Using genotypes derived from genome-wide associations studies of the largest available cohorts of patients and control subjects, we investigated whether genes enriched for schizophrenia and bipolar disorder association show a bias for expression across any of 13 developmental stages in prefrontal cortical and subcortical brain regions. We show that genetic association with schizophrenia is positively correlated with expression in the prefrontal cortex during early midfetal development and early infancy, and negatively correlated with expression during late childhood, which stabilises in adolescence. In contrast, risk-associated genes for bipolar disorder did not exhibit a bias towards expression at any prenatal stage, although the pattern of postnatal expression was similar to that of schizophrenia. These results highlight the dynamic expression of genes harbouring risk for schizophrenia and bipolar disorder across prefrontal cortex development and support the hypothesis that prenatal neurodevelopmental events are more strongly associated with schizophrenia than bipolar disorder

    Pharmacogenomic variants and drug interactions identified through the genetic analysis of clozapine metabolism

    Get PDF
    Objective: Clozapine is the only effective medication for treatment-resistant schizophrenia, but its worldwide use is still limited because of its complex titration protocols. While the discovery of pharmacogenomic variants of clozapine metabolism may improve clinical management, no robust findings have yet been reported. This study is the first to adopt the framework of genome-wide association studies (GWASs) to discover genetic markers of clozapine plasma concentrations in a large sample of patients with treatment-resistant schizophrenia. Methods: The authors used mixed-model regression to combine data from multiple assays of clozapine metabolite plasma concentrations from a clozapine monitoring service and carried out a genome-wide analysis of clozapine, norclozapine, and their ratio on 10,353 assays from 2,989 individuals. These analyses were adjusted for demographic factors known to influence clozapine metabolism, although it was not possible to adjust for all potential mediators given the available data. GWAS results were used to pinpoint specific enzymes and metabolic pathways and compounds that might interact with clozapine pharmacokinetics. Results: The authors identified four distinct genome-wide significant loci that harbor common variants affecting the metabolism of clozapine or its metabolites. Detailed examination pointed to coding and regulatory variants at several CYP* and UGT* genes as well as corroborative evidence for interactions between the metabolism of clozapine, coffee, and tobacco. Individual effects of single single-nucleotide polymorphisms (SNPs) fine-mapped from these loci were large, such as the minor allele of rs2472297, which was associated with a reduction in clozapine concentrations roughly equivalent to a decrease of 50 mg/day in clozapine dosage. On their own, these single SNPs explained from 1.15% to 9.48% of the variance in the plasma concentration data. Conclusions: Common genetic variants with large effects on clozapine metabolism exist and can be found via genome-wide approaches. Their identification opens the way for clinical studies assessing the use of pharmacogenomics in the clinical management of patients with treatment-resistant schizophrenia

    Rare copy number variations are associated with poorer cognition in schizophrenia

    Get PDF
    Background Cognitive impairment in schizophrenia is a major contributor to poor outcomes yet its causes are poorly understood. Some rare copy number variants (CNVs) are associated with schizophrenia risk and impact cognition in healthy populations but their contribution to cognitive impairment in schizophrenia has not been investigated. We examined the effect of 12 schizophrenia CNVs on cognition in those with schizophrenia. Methods General cognitive ability was measured using the MATRICS composite z-score in 875 schizophrenia cases, and in a replication sample of 519 schizophrenia cases using WAIS Full-Scale IQ. Using linear regression we tested for association between cognition and schizophrenia CNV status, covarying for age and sex. In addition, we tested whether CNVs hitting genes in schizophrenia enriched gene sets (loss of function intolerant or synaptic gene sets) were associated with cognitive impairment. Results 23 schizophrenia CNV carriers were identified. Schizophrenia CNV carriers had lower general cognitive ability than non-schizophrenia CNV carriers in discovery (β=-0.66, 95%CI = -1.31 to -0.01) and replication samples (β=-0.91, 95%CI =-1.71 to -0.11), and after meta-analysis (β=-0.76, 95%CI=-1.26 to -0.25, p=0.003). CNVs hitting loss of function intolerant genes were associated with lower cognition (β= -0.15, 95%CI=-0.29 to -0.001, p=0.048). Conclusions In those with schizophrenia, cognitive ability in schizophrenia CNV carriers is 0.5-1.0 standard deviations below non-CNV carriers, which may have implications for clinical assessment and management. We also demonstrate that rare CNVs hitting genes intolerant to loss of function variation lead to more severe cognitive impairment, above and beyond the effect of known schizophrenia CNVs

    Quantum Calogero-Moser Models: Integrability for all Root Systems

    Get PDF
    The issues related to the integrability of quantum Calogero-Moser models based on any root systems are addressed. For the models with degenerate potentials, i.e. the rational with/without the harmonic confining force, the hyperbolic and the trigonometric, we demonstrate the following for all the root systems: (i) Construction of a complete set of quantum conserved quantities in terms of a total sum of the Lax matrix (L), i.e. (\sum_{\mu,\nu\in{\cal R}}(L^n)_{\mu\nu}), in which ({\cal R}) is a representation space of the Coxeter group. (ii) Proof of Liouville integrability. (iii) Triangularity of the quantum Hamiltonian and the entire discrete spectrum. Generalised Jack polynomials are defined for all root systems as unique eigenfunctions of the Hamiltonian. (iv) Equivalence of the Lax operator and the Dunkl operator. (v) Algebraic construction of all excited states in terms of creation operators. These are mainly generalisations of the results known for the models based on the (A) series, i.e. (su(N)) type, root systems.Comment: 45 pages, LaTeX2e, no figure

    Schizophrenia copy number variants and associative learning

    Get PDF
    Large-scale genomic studies have made major progress in identifying genetic risk variants for schizophrenia. A key finding from these studies is that there is an increased burden of genomic copy number variants (CNVs) in schizophrenia cases compared with controls. The mechanism through which these CNVs confer risk for the symptoms of schizophrenia, however, remains unclear. One possibility is that schizophrenia risk CNVs impact basic associative learning processes, abnormalities of which have long been associated with the disorder. To investigate whether genes in schizophrenia CNVs impact on specific phases of associative learning we combined human genetics with experimental gene expression studies in animals. In a sample of 11 917 schizophrenia cases and 16 416 controls, we investigated whether CNVs from patients with schizophrenia are enriched for genes expressed during the consolidation, retrieval or extinction of associative memories. We show that CNVs from cases are enriched for genes expressed during fear extinction in the hippocampus, but not genes expressed following consolidation or retrieval. These results suggest that CNVs act to impair inhibitory learning in schizophrenia, potentially contributing to the development of core symptoms of the disorder

    The research-teaching nexus: A case study of students' awareness, experiences and perceptions of research

    Get PDF
    This paper presents a case study of students' awareness, experiences and perceptions of research in a 'new' university in the UK. The findings are based on a questionnaire of almost 200 students and five small group interviews. Many of the students participating in this research perceived clear benefits to their learning from staff research, including being taught by enthusiastic staff, enhanced staff credibility, and the reflected glory of being taught by well-known researchers. However, they also perceived disadvantages, particularly with regard to staff availability, and did not believe that staff research should take priority over their needs as learners. They recognised that their awareness of the nature of research and the development of research skills increased most when they were actively involved in undertaking research projects. Several students also perceived benefits for future employment from their participation in research activities. The questionnaire has been used by several other universities around the world to benchmark their practices. © 2010 Taylor & Francis

    Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development.

    Get PDF
    Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life

    Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection

    Get PDF
    Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide such insight. We report the largest single cohort genome-wide association study of schizophrenia (11,260 cases and 24,542 controls) and through meta-analysis with existing data we identify 50 novel GWAS loci. Using gene-wide association statistics we implicate an additional set of 22 novel associations that map onto a single gene. We show for the first time that the common variant association signal is highly enriched among genes that are intolerant to loss of function mutations and that variants in these genes persist in the population despite the low fecundity associated with the disorder through the process of background selection. Associations point to novel areas of biology (e.g. metabotropic GABA-B signalling and acetyl cholinesterase), reinforce those implicated in earlier GWAS studies (e.g. calcium channel function), converge with earlier rare variants studies (e.g. NRXN1, GABAergic signalling), identify novel overlaps with autism (e.g. RBFOX1, FOXP1, FOXG1), and support early controversial candidate gene hypotheses (e.g. ERBB4 implicating neuregulin signalling). We also demonstrate the involvement of six independent central nervous system functional gene sets in schizophrenia pathophysiology. These findings provide novel insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation intolerant genes and suggest a mechanism by which common risk variants are maintained in the population
    corecore