219 research outputs found

    Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids

    Get PDF
    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals

    Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina

    Get PDF
    Background: Evidence emerging from a variety of approaches used in different species suggests that Müller cell function may extend beyond its role of maintaining retinal homeostasis to that of progenitors in the adult retina. Enriched Müller cells in vitro or those that re-enter cell cycle in response to neurotoxin-damage to retina in vivo display multipotential and self-renewing capacities, the cardinal features of stem cells. Methodology/Principal Findings: We demonstrate that Notch and Wnt signaling activate Müller cells through their canonical pathways and that a rare subset of activated Müller cells differentiates along rod photoreceptor lineage in the outer nuclear layer. The differentiation of activated Müller cells along photoreceptor lineage is confirmed by multiple approaches that included Hoechst dye efflux analysis, genetic analysis using retina from Nrl-GFP mice, and lineage tracing using GS-GFP lentivirus in wild type and rd mice in vitro and S334ter rats in vivo. Examination of S334ter rats for head-neck tracking of visual stimuli, a behavioral measure of light perception, demonstrates a significant improvement in light perception in animals treated to activate Müller cells. The number of activated Müller cells with rod photoreceptor phenotype in treated animals correlates with the improvement in their light perception. Conclusion/Significance: In summary, our results provide a proof of principle for non-neurotoxin-mediated activation o

    Shedding Light on Vampires: The Phylogeny of Vampyrellid Amoebae Revisited

    Get PDF
    With the advent of molecular phylogenetic techniques the polyphyly of naked filose amoebae has been proven. They are interspersed in several supergroups of eukaryotes and most of them already found their place within the tree of life. Although the ‘vampire amoebae’ have attracted interest since the middle of the 19th century, the phylogenetic position and even the monophyly of this traditional group are still uncertain. In this study clonal co-cultures of eight algivorous vampyrellid amoebae and the respective food algae were established. Culture material was characterized morphologically and a molecular phylogeny was inferred using SSU rDNA sequence comparisons. We found that the limnetic, algivorous vampyrellid amoebae investigated in this study belong to a major clade within the Endomyxa Cavalier-Smith, 2002 (Cercozoa), grouping together with a few soil-dwelling taxa. They split into two robust clades, one containing species of the genus Vampyrella Cienkowski, 1865, the other containing the genus Leptophrys Hertwig & Lesser, 1874, together with terrestrial members. Supported by morphological data these clades are designated as the two families Vampyrellidae Zopf, 1885, and Leptophryidae fam. nov. Furthermore the order Vampyrellida West, 1901 was revised and now corresponds to the major vampyrellid clade within the Endomyxa, comprising the Vampyrellidae and Leptophryidae as well as several environmental sequences. In the light of the presented phylogenetic analyses morphological and ecological aspects, the feeding strategy and nutritional specialization within the vampyrellid amoebae are discussed

    Early evolution of the LIM homeobox gene family

    Get PDF
    Background: LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known

    Functional Dicer Is Necessary for Appropriate Specification of Radial Glia during Early Development of Mouse Telencephalon

    Get PDF
    Early telencephalic development involves transformation of neuroepithelial stem cells into radial glia, which are themselves neuronal progenitors, around the time when the tissue begins to generate postmitotic neurons. To achieve this transformation, radial precursors express a specific combination of proteins. We investigate the hypothesis that micro RNAs regulate the ability of the early telencephalic progenitors to establish radial glia. We ablate functional Dicer, which is required for the generation of mature micro RNAs, by conditionally mutating the Dicer1 gene in the early embryonic telencephalon and analyse the molecular specification of radial glia as well as their progeny, namely postmitotic neurons and basal progenitors. Conditional mutation of Dicer1 from the telencephalon at around embryonic day 8 does not prevent morphological development of radial glia, but their expression of Nestin, Sox9, and ErbB2 is abnormally low. The population of basal progenitors, which are generated by the radial glia, is disorganised and expanded in Dicer1-/- dorsal telencephalon. While the proportion of cells expressing markers of postmitotic neurons is unchanged, their laminar organisation in the telencephalic wall is disrupted suggesting a defect in radial glial guided migration. We found that the laminar disruption could not be accounted for by a reduction of the population of Cajal Retzius neurons. Together, our data suggest novel roles for micro RNAs during early development of progenitor cells in the embryonic telencephalon

    NEW RECORD OF THE BAT PLECOTUS-PHYLLOTIS FROM UTAH USA

    No full text
    Volume: 35Start Page: 452End Page: 45
    corecore