6 research outputs found

    Inhibition of human immunodeficiency virus type-1 (HIV-1) glycoprotein-mediated cell-cell fusion by immunor (IM28)

    No full text
    Abstract Background Immunor (IM28), an analog of dehydroepiandrosterone (DHEA), inhibits human immunodeficiency virus type-1 (HIV-1) by inhibiting reverse transcriptase. We assessed the ability of IM28 to inhibit the cell-cell fusion mediated by HIV envelope glycoprotein in an in vitro system. For this purpose, we co-cultured TF228.1.16, a T-cell line expressing stably HIV-1 glycoprotein envelopes, with an equal number of 293/CD4+, another T cell line expressing CD4, and with the SupT1 cell line with or without IM28. Results In the absence of IM28, TF228.1.16 fused with 293/CD4+, inducing numerous large syncytia. Syncytia appeared more rapidly when TF228.1.16 was co-cultured with SupT1 cells than when it was co-cultured with the 293/CD4+ cell line. IM28 (1.6 – 45 μg/ml) completely inhibits cell-cell fusion. IM28 also prevented the development of new syncytia in infected cells and protected naive SupT1 cells from HIV-1 infection. Evaluation of 50% inhibitory dose (IC50) of IM28 revealed a decrease in HIV-1 replication with an IC50 of 22 mM and 50% cytotoxicity dose (CC50) as determined on MT2 cells was 75 mM giving a selectivity index of 3.4 Conclusions These findings suggest that IM28 exerts an inhibitory action on the env proteins that mediate cell-cell fusion between infected and healthy cells. They also suggest that IM28 interferes with biochemical processes to stop the progression of existing syncytia. This property may lead to the development of a new class of therapeutic drug.</p

    Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS

    No full text
    T cell activation levels in HIV infection are predictive of AIDS progression. We searched for the immunological correlates of protection against disease progression by studying the early stages of nonpathogenic SIV infection in African green monkeys (SIVagm). The African green monkeys (AGMs) displayed high peak viremias and a transient decline in levels of blood CD4(+) and CD8(+) T cells between days 5 and 17 after infection. A concomitant increase in levels of CD4(+)DR(+), CD8(+)DR(+), and CD8(+)CD28(–) cells was detected. After the third week, T cell activation returned to baseline levels, which suggested a protective downregulation of T cell activation. A very early (24 hours after infection) and strong induction of TGF-β1 and FoxP3 expression was detected and correlated with increases in levels of CD4(+)CD25(+) and CD8(+)CD25(+) T cells. This was followed by a significant increase in levels of IL-10, whereas IFN-γ gene upregulation was more transient, and levels of TNF-α and MIP-1α/β transcripts did not increase in either blood or tissues. The profiles were significantly different during primary SIV infection in macaques (SIVmac); that is, there was a delayed increase in IL-10 levels accompanied by moderate and persistent increases in TGF-β levels. Together, our data show that SIVagm infection is associated with an immediate antiinflammatory environment and suggest that TGF-β may participate in the generation of Tregs, which may prevent an aberrant chronic T cell hyperactivation
    corecore