1 research outputs found

    A software architecture for electro-mobility services: a milestone for sustainable remote vehicle capabilities

    Get PDF
    To face the tough competition, changing markets and technologies in automotive industry, automakers have to be highly innovative. In the previous decades, innovations were electronics and IT-driven, which increased exponentially the complexity of vehicle’s internal network. Furthermore, the growing expectations and preferences of customers oblige these manufacturers to adapt their business models and to also propose mobility-based services. One other hand, there is also an increasing pressure from regulators to significantly reduce the environmental footprint in transportation and mobility, down to zero in the foreseeable future. This dissertation investigates an architecture for communication and data exchange within a complex and heterogeneous ecosystem. This communication takes place between various third-party entities on one side, and between these entities and the infrastructure on the other. The proposed solution reduces considerably the complexity of vehicle communication and within the parties involved in the ODX life cycle. In such an heterogeneous environment, a particular attention is paid to the protection of confidential and private data. Confidential data here refers to the OEM’s know-how which is enclosed in vehicle projects. The data delivered by a car during a vehicle communication session might contain private data from customers. Our solution ensures that every entity of this ecosystem has access only to data it has the right to. We designed our solution to be non-technological-coupling so that it can be implemented in any platform to benefit from the best environment suited for each task. We also proposed a data model for vehicle projects, which improves query time during a vehicle diagnostic session. The scalability and the backwards compatibility were also taken into account during the design phase of our solution. We proposed the necessary algorithms and the workflow to perform an efficient vehicle diagnostic with considerably lower latency and substantially better complexity time and space than current solutions. To prove the practicality of our design, we presented a prototypical implementation of our design. Then, we analyzed the results of a series of tests we performed on several vehicle models and projects. We also evaluated the prototype against quality attributes in software engineering
    corecore