
A Software Architecture for Electro-Mobility Services: a Milestone for
sustainable Remote Vehicle Capabilities

Doctoral thesis

to be awarded the degree

Doctor rerum naturalium (Dr. rer. nat.)

submitted by
Vladivy Poaka Poaka

from Batoufam, Cameroon

approved by the Faculty of Mathematics/Computer Science
and Mechanical Engineering,

Clausthal University of Technology,

Date of oral examination
March 29, 2022

Dean
Prof. Dr. rer. nat. Jörg Philipp Müller

Chairperson of the Board of Examiners
Prof. Dr. rer. nat. Christian Siemers

Examiners
Prof. Dr. rer. nat. habil. Sven Hartmann
apl. Prof. Dr.-Ing. habil. Umut Durak

This work is licensed under CC-BY 4.0

Abstract

To face the tough competition, changing markets and technologies in automotive industry,
automakers have to be highly innovative. In the previous decades, innovations were electronics and
IT-driven, which increased exponentially the complexity of vehicle’s internal network. Furthermore,
the growing expectations and preferences of customers oblige these manufacturers to adapt
their business models and to also propose mobility-based services. One other hand, there is
also an increasing pressure from regulators to significantly reduce the environmental footprint in
transportation and mobility, down to zero in the foreseeable future.

This dissertation investigates an architecture for communication and data exchange within
a complex and heterogeneous ecosystem. This communication takes place between various
third-party entities on one side, and between these entities and the infrastructure on the other.
The proposed solution reduces considerably the complexity of vehicle communication and within
the parties involved in the ODX life cycle. In such an heterogeneous environment, a particular
attention is paid to the protection of confidential and private data. Confidential data here refers
to the OEM’s know-how which is enclosed in vehicle projects. The data delivered by a car during
a vehicle communication session might contain private data from customers. Our solution ensures
that every entity of this ecosystem has access only to data it has the right to. We designed our
solution to be non-technological-coupling so that it can be implemented in any platform to benefit
from the best environment suited for each task. We also proposed a data model for vehicle projects,
which improves query time during a vehicle diagnostic session. The scalability and the backwards
compatibility were also taken into account during the design phase of our solution.

We proposed the necessary algorithms and the workflow to perform an efficient vehicle
diagnostic with considerably lower latency and substantially better time and space complexity than
current solutions. To prove the practicalityofourdesign,wepresented a prototypical implementation
of our design. Then, we analyzed the results of a series of tests we performed on several vehicle
models and projects. We also evaluated the prototype against quality attributes in Software
Engineering.

A Milestone for sustainable Remote Vehicle Capabilities i

Dedication

To my beloved mum and dad,

who have helped me along the path of knowledge and wisdom,

and have successfully guided me through so many years.

And to my siblings.

My deepest gratitude.

A Milestone for sustainable Remote Vehicle Capabilities ii

Contents

Abstract i

Dedication ii

Contents ix

List of Algorithms x

List of Figures xii

List of Tables xiii

Acronyms xiv

I Context, Background & Objectives 1

1 Introduction 2
1.1 Motivations . 3
1.2 Goal of this thesis . 4

1.2.1 Objectives . 5
1.2.2 Goal of this thesis . 7

1.3 Contributions of this thesis . 9
1.3.1 Cost-efficiency & Compatibility . 9
1.3.2 Scalability & Availability . 10
1.3.3 Runtime Complexity . 11

1.4 Non-functional requirements . 11
1.4.1 Security . 12
1.4.2 Compatibility . 12
1.4.3 User roles . 12
1.4.4 Data consistency . 12
1.4.5 Quality attributes . 13
1.4.6 Maintainability & Extensibility . 13

1.5 Outline of this thesis . 13

II Fundamentals 15

2 Norms & Standards in Automotive Industry 16
2.1 Vehicle diagnostic and vehicle communication . 16

2.1.1 Diagnostic protocols . 17
2.1.2 Diagnostic workflow . 19

A Milestone for sustainable Remote Vehicle Capabilities iii

Contents

2.1.3 Diagnostic services . 20
2.2 Standardization organizations . 22
2.3 ISO 22901-1: ODX – Data model specification . 23

2.3.1 ECU’s life cycle . 23
2.3.2 Overview of the ODX components . 24
2.3.3 Diagnostic layers inheritance . 25
2.3.4 ODX file types . 26
2.3.5 ODX Catalog . 26
2.3.6 Special Data Group . 27
2.3.7 Administrative data . 27
2.3.8 Audience class . 27

2.4 Advantages of ODX format . 27
2.4.1 ECU system suppliers . 28
2.4.2 Engineering at vehicle manufacturer . 28
2.4.3 Production at vehicle manufacturer . 28
2.4.4 Vehicle manufacturer service department and dealerships 28
2.4.5 Test equipment manufacturers . 28
2.4.6 Franchise and aftermarket dealerships . 28
2.4.7 Legal authorities . 29

2.5 Standard communication between the ODX life cycle’s third-parties 29
2.5.1 ISO 22900-2: D-PDU API . 29
2.5.2 ISO 22900-3: D-Server API . 30
2.5.3 D-Server . 31

2.6 Current implementations . 34
2.6.1 Advantages of the runtime data format . 34
2.6.2 Some implementations . 35

2.7 Summary . 35

3 Microservice-Oriented Architecture 36
3.1 Cloud Microservices . 37

3.1.1 Definitions . 37
3.1.2 Microservice-oriented architecture vs. SOA . 38
3.1.3 Microservice design principles . 40
3.1.4 Advantages of Microservices . 41
3.1.5 Drawbacks of microservices . 42

3.2 How to detect Microservices boundaries . 43
3.2.1 Domain Driven Design . 43
3.2.2 Business capability-based decomposition . 45
3.2.3 Sub-domain-based decomposition . 46
3.2.4 Complementary decomposition principles . 46

3.3 Microservices Inter-communication . 47
3.3.1 Communication styles . 47
3.3.2 Message formats . 47
3.3.3 Interaction via APIs . 48
3.3.4 How to improve the system resilience . 49

3.4 Inter-process interaction technologies . 50
3.4.1 ReST communication model . 50
3.4.2 The gRPC framework . 51
3.4.3 Apache Thrift . 52
3.4.4 Message-based communication . 52

3.5 Service Discovery . 55

A Milestone for sustainable Remote Vehicle Capabilities iv

Contents

3.5.1 Application-side service discovery . 55
3.5.2 Platform-side service discovery . 55

3.6 Summary . 56

4 Data persistence in a MOA 57
4.1 Distributed Transactions . 57

4.1.1 The two-phase commit . 57
4.1.2 Variants of the two-phase commit . 58
4.1.3 The two-phase commit and Microservices . 58

4.2 The Saga pattern . 59
4.2.1 Achieving atomicity through an Event datastore 59
4.2.2 Achieving atomicity through Transaction log . 59
4.2.3 Workflodize-based Saga . 60
4.2.4 Orchestration-based Saga . 61
4.2.5 Reservation-based Saga . 61
4.2.6 Choreography-based Saga . 62
4.2.7 Consistency patterns . 62

4.3 How to handle Queries in a Microservice-based architecture 63
4.3.1 Composition Pattern . 63
4.3.2 CQRS . 64

4.4 Summary . 66

5 Microservice Utilities 67
5.1 Microservice Framework . 67

5.1.1 Microservice Chassis . 67
5.1.2 Purposes of a Microservice Chassis . 68
5.1.3 Design a Microservice Chassis . 70

5.2 Tests in a MOA . 71
5.2.1 Classification of testing methods . 71
5.2.2 Testing procedures of a microservice . 72

5.3 Guidelines for Microservice testing . 73
5.3.1 Unit testing of a service . 73
5.3.2 Integration testing of a service . 73
5.3.3 Component testing of a service . 74
5.3.4 End-to-end testing of a service . 74

5.4 Summary . 75

6 Databases and Data Schemas 76
6.1 DBMS and Data Architecture Pattern . 76
6.2 Relational DBMSs . 77

6.2.1 Query and Data Languages . 78
6.2.2 Working principle . 78
6.2.3 Handling data with Transactions . 78
6.2.4 Advantages . 79
6.2.5 Limitations . 79
6.2.6 Scalability in RDBMSs . 80

6.3 NoSQL DBMSs . 81
6.3.1 Definitions and Properties . 81
6.3.2 Characteristics of NoSQL datastores . 82
6.3.3 NoSQL advantages . 83
6.3.4 NoSQL limitations . 84
6.3.5 Optimizations at the low-level . 84

A Milestone for sustainable Remote Vehicle Capabilities v

Contents

6.3.6 Consistent hashing . 85
6.3.7 Data consistency in NoSQL systems . 85
6.3.8 Architectural Comparison . 86
6.3.9 Comparison summary . 87

6.4 Categories of NoSQL . 87
6.4.1 Key-value datastores . 88
6.4.2 Graph datastores . 89
6.4.3 Column family datastores . 90
6.4.4 Document datastores . 91
6.4.5 Some uses of NoSQL datastores . 92
6.4.6 Bottom line of NoSQL datastores . 92

6.5 XML datastores . 93
6.5.1 Compatibility with many types of documents . 93
6.5.2 Use of Standards & Triggers . 93
6.5.3 Flexibility and Security policies . 94
6.5.4 XQuery . 94
6.5.5 Data validation in XML Datastores . 95

6.6 Best practices in NoSQL DBMSs . 96
6.6.1 Moving queries to data . 96
6.6.2 Hash rings . 97
6.6.3 Replication . 97
6.6.4 Federated Search . 98

6.7 Data Security . 98
6.7.1 Security requirements . 98
6.7.2 RBAC . 101
6.7.3 LBAC . 101
6.7.4 ABAC . 102
6.7.5 Using Data Warehouses and OLAP tools . 102
6.7.6 Application- vs. Database-level Security policies 102
6.7.7 Using the API gateway . 103

6.8 Information search in NoSQL DBMSs . 104
6.8.1 Types of search . 104
6.8.2 Effective Search Strategies . 105

6.9 Other types of DBMSs . 107
6.9.1 ODBMS . 107
6.9.2 NewSQL Databases . 107
6.9.3 Hybrid DBMS . 108

6.10 Summary . 109

III The Dictionary Server 110

7 Dictionary Server 111
7.1 Architecture Design Activities . 111
7.2 Dictionary Server Design . 112

7.2.1 Advantages of the Dictionary Server . 112
7.2.2 Architecture Design of the Dictionary Server . 113
7.2.3 Building blocks of the Dictionary Server . 113

7.3 Main algorithms . 115
7.3.1 Data extraction algorithm . 115
7.3.2 ODX file parsing . 115

A Milestone for sustainable Remote Vehicle Capabilities vi

Contents

7.3.3 Values extraction algorithm . 117
7.3.4 Bulk insertion of values . 117

7.4 Whole picture . 118
7.4.1 Relevant data type for vehicle diagnostic . 118
7.4.2 Data Workflow during a vehicle diagnostic session 119
7.4.3 Coordination of tasks . 120
7.4.4 Sequence diagram of a vehicle diagnostic session 121

7.5 Design of the the diagnostic levels . 123
7.6 Security in the Dictionary Server . 123

7.6.1 Driver role . 123
7.6.2 Remote Assistant role . 123
7.6.3 Technician role . 124
7.6.4 Advanced Technician role . 124
7.6.5 Campaign Manager . 124
7.6.6 Data Analyst . 124

7.7 Summary . 125

8 Dictionary Database 126
8.1 Core entities of the Data Model Design . 126

8.1.1 Diagnostic Services . 127
8.1.2 Functional addressing . 129
8.1.3 Logical Link . 129
8.1.4 ECU Job . 129
8.1.5 Diagnostic Trouble Code . 130
8.1.6 Computational Method . 130
8.1.7 Complex DOP . 131
8.1.8 ECU Memory Programming . 132
8.1.9 ECU Configuration . 134
8.1.10 Library . 134

8.2 Data Model of the Dictionary Database . 134
8.2.1 Data Model for DTCs translation . 135
8.2.2 Data Models for PDUs . 136
8.2.3 Data Models for ECU Jobs . 137

8.3 Summary . 138

9 Implementation 139
9.1 Security in a Microservice architecture . 139

9.1.1 Authentication . 139
9.1.2 Authorization . 140

9.2 Configurability of a Microservice . 140
9.2.1 Push Model . 141
9.2.2 Pull Model . 141

9.3 Observability of a Microservice . 141
9.3.1 Health Check API pattern . 142
9.3.2 Log Aggregation pattern . 142
9.3.3 Distributed Tracing pattern . 142
9.3.4 Application Metrics pattern . 142
9.3.5 Exception Tracking pattern . 143
9.3.6 Audit Logging pattern . 143

9.4 Dictionary Server Micro-design . 144
9.4.1 Controller . 144
9.4.2 Selector . 144

A Milestone for sustainable Remote Vehicle Capabilities vii

Contents

9.4.3 Business Logic . 145
9.4.4 Repository Manager . 145

9.5 Dictionary Server Logical Architecture . 146
9.5.1 Dictionary Service Architecture . 146
9.5.2 Dictionary Gateway Architecture . 147

9.6 Dictionary Server Security Measures . 148
9.7 Summary . 149

IV Development, Tests & Results 150

10 Development environment 151
10.1 Parallel computing . 151

10.1.1 Definitions . 151
10.1.2 Types of parallel programming models . 151
10.1.3 Not every algorithm is parallelizable . 153
10.1.4 Weak scaling . 153
10.1.5 Strong vs. Weak scaling . 154
10.1.6 Reality might be even worse . 155

10.2 What if... 155
10.2.1 ... we used a RDBMS? . 156
10.2.2 ... we used a Key-value DBMS? . 156
10.2.3 ... we used a Graph DBMS? . 156
10.2.4 ... we used a Column family DBMS? . 157
10.2.5 ... we used a Document DBMS? . 157

10.3 Summary of computational complexities . 157
10.4 Development of Dictionary Server . 158

10.4.1 Parsing Technology . 158
10.4.2 Business Logic . 159
10.4.3 Domain and Persistence Entities . 159
10.4.4 Data Integrity and Consistency . 159

10.5 Diagnostic applications – the client side . 161
10.5.1 Vehicle diagnostic mobile application . 161
10.5.2 Interpretation of vehicle data . 161
10.5.3 Guided Fault Finding . 161
10.5.4 Infrastructure support in V2X systems . 162
10.5.5 Vehicle Data Campaign . 162

10.6 Summary . 163

11 Tests, Results & Benchmarking/Discussion 164
11.1 Benchmarking with existing solution . 164
11.2 Prototype quality attributes . 166

11.2.1 Functional suitability . 166
11.2.2 Reliability . 167
11.2.3 Performance efficiency . 167
11.2.4 Usability . 167
11.2.5 Security . 168
11.2.6 Compatibility . 169
11.2.7 Maintainability . 169
11.2.8 Portability . 170

11.3 Discussion of challenges . 170
11.3.1 Protection of the OEM’s know-how . 171

A Milestone for sustainable Remote Vehicle Capabilities viii

Contents

11.3.2 No technology coupling . 171
11.3.3 Scalability . 171
11.3.4 Data model for vehicle projects . 172
11.3.5 Online and remote capabilities . 172
11.3.6 Backwards compatibility . 173
11.3.7 Future-proof architecture . 173

11.4 Application spectrum – User stories . 174
11.4.1 Vehicle remote capabilities . 174
11.4.2 Remote emission controls . 174
11.4.3 First level vehicle diagnostic . 174
11.4.4 Proactive maintenance . 175
11.4.5 Feature on Demand . 175
11.4.6 Do not use a relational data pattern . 175
11.4.7 Use a NoSQL datastore instead . 176
11.4.8 Think about data and system security . 176

11.5 Summary . 177

V Conclusion & Perspectives 178

12 Conclusion and Outlook 179
12.1 Overview . 179
12.2 Summary . 180

12.2.1 Security of OEM’s and System Data . 180
12.2.2 Architecture Design Principles . 181
12.2.3 Communication Standards . 181
12.2.4 Software Quality Attributes . 181

12.3 Contributions . 181
12.4 Outlook . 182

Appendices 183

Mathematical background 184
1 Big O Notation . 184
2 Ω notation . 184
3 Θ notation . 185

Agile Service Development 186
1 Agile methods . 186
2 Agility aspects . 187
3 Patterns for agility . 187

Bibliography I

Afterword XIII

A Milestone for sustainable Remote Vehicle Capabilities ix

List of Algorithms

6.5.1An example of a document update. 95
7.3.1Bulk insertion algorithm. 116
7.3.2Data extraction algorithm. 116
7.3.3File parsing algorithm. 117
7.3.4Values extraction algorithm. 118
7.4.1Coordination algorithm. 120
7.4.2Coordination algorithm – Next. 121
7.4.3Coordination algorithm – Conclusion. 122

A Milestone for sustainable Remote Vehicle Capabilities x

List of Figures

1.1 Elements to address the issue about OEM know-how safety. 5
1.2 Elements to address the issue about the technological coupling. 5
1.3 Elements to address the scalability issue. 6
1.4 Elements required to design an efficient data model. 6
1.5 Elements to address the issue about the remote capabilities. 7
1.6 Elements to address the issue about the backwards compatibility. 7
1.7 Purpose of this research work. 8

2.1 Central gateway architecture. 17
2.2 Multigateways architecture. 18
2.3 Guided vehicle diagnostic. 20
2.4 Usage of ODX in the ECU life cycle. 24
2.5 ODX data model overview. 25
2.6 Diagnostic layer hierarchy. 25
2.7 Structure overview of the PDX catalog. 27
2.8 Architecture of a MVCI compliant D-Server. 29
2.9 MVCI protocol module configurations. 30
2.10 Architecture of ASAM-based diagnostic applications. 31
2.11 Standardized runtime diagnostic process. 32
2.12 Architecture of a D-Server. 33

3.1 IoT stack architecture. 37
3.2 The three axes for application scaling. 38
3.3 Persistence tier in Service-oriented architecture. 39
3.4 Persistence mechanism in Microservice-oriented architecture. 39
3.5 Layered architecture of a domain. 43
3.6 API Gateway communication style. 48
3.7 gRPC call mechanism. 51
3.8 Partitioned channel to handle competing consumers. 54
3.9 Client-side discovery . 55
3.10 Platform-side discovery . 56

4.1 The two-phase commit. 58
4.2 Atomicity with local transactions . 60
4.3 Atomicity with transaction log . 60
4.4 Data query with the Composition pattern. 64
4.5 Classic CRUD vs. CQRS pattern. 65

5.1 A Microservice Chassis. 68
5.2 A Service Mesh. 69
5.3 The test pyramid. 72

A Milestone for sustainable Remote Vehicle Capabilities xi

List of Figures

6.1 Levels of data architecture pattern. 77
6.2 Replication and mirroring. 80
6.3 Sharing resources architectures. 83
6.4 Data sharding. 83
6.5 Comparison between relational and NoSQL DBMSs. 86
6.6 Data model of the triple store. 89
6.7 A fragment of validation rules in schematron. 96
6.8 Improving NoSQL performance with replication. 97
6.9 Improving NoSQL performance with the federated search. 98
6.10 The concentric rings model. 101
6.11 Use of a data warehouse and OLAP tools. 103
6.12 Use of the API gateway to handle the data access control. 104
6.13 Parallel execution of queries. 108

7.1 Diagnostic applications architecture. 112
7.2 Dictionary Server architecture. 114
7.3 Sequence diagram of a session. 122

8.1 Data structure of the DIAG-SERVICE. 127
8.2 Diagnostic Object Property package. 131
8.3 Diagnostic layers hierarchy. 135
8.4 Data model for DTCs translation. 135
8.5 Data model for Logical Links. 136
8.6 Data model for PDU requests. 136
8.7 Data model for Computational Methods. 137
8.8 Data model for Measurement Units. 137
8.9 Data model for ECU Job. 137

9.1 Some observability patterns. 141
9.2 The microservice structure. 144
9.3 Microservice collaboration. 145
9.4 The Dictionary Server’s Macrostructure. 146
9.5 The Deployment Architecture. 148

10.1 Parallel addition of the elements of an array. 152
10.2 Parallel execution of an algorithm. 153
10.3 Amdahl’s law. 154
10.4 Gustafson’s law. 154
10.5 Amdahl’s law vs Gustafson’s law. 155
10.6 Overview of the requests database. 160
10.7 Overview of the logical_link database. 160
10.8 Overview of a Guided Fault Finding. 162
10.9 Sequence of a vehicle campaign procedure. 163

A Milestone for sustainable Remote Vehicle Capabilities xii

List of Tables

2.1 Communication protocols. 19
2.2 A list of Unified Diagnostic Services. 21

6.1 Main differences between Relational and NoSQL data management systems. 87
6.2 DBMSs comparison by functionalities. 88
6.3 Descriptions and examples of typical uses. 93

10.1 Estimation of time complexity per data pattern. 158

11.1 Comparison between the MVCI Runtime Server and the Dictionary Server. 166

A Milestone for sustainable Remote Vehicle Capabilities xiii

Acronyms

2PC two-phase commit
3PC three-phase commit

ABAC Attribute-Based Access Control
ABS Anti-lock Braking System
ACID Atomicity, Consistency, Isolation, Durability
ACL Access Control List
ACM Association for Computing Machinery
AMQP Advanced Message Queuing Protocol
AOP Aspect-Oriented Programming
API Application Programming Interface
ASAM Association for Standardization of Automation and Measuring systems
AUTOSAR AUTomotive Open System ARchitecture

BASE Basic Availability, Soft-state, and Eventual consistency
BLOB Binary Large OBject
BMW Bayerische MotorenWerke
BSON Binary JSON
BWT BurrowsWheeler Transform

CAD Computer Aided Design
CAM Computer Aided manufacturing
CAN Controller Area Network
CAP Consistency, Availability and Partition
CASE Computer Aided Software Engineering
CCP Common Closure Principle
CPS Cyber-Physical Systems
CPU Central Processing Unit
CQRS Command Query Responsibility Segregation
CRUD Create, Retrieve, Update, and Delete
cURL client for URL

D-PDU API Diagnostic Protocol Data Unit API
D-Server Diagnostic Server
D2PC Dynamic two-phase commit
DBA DataBase Administrator

A Milestone for sustainable Remote Vehicle Capabilities xiv

Acronyms

DBMS DataBase Management System
DDD Domain-Driven Design
DDL Data Definition Language
DML Data Manipulation Language
DNS Domain Name System
DoCAN Diagnostic communication over CAN
DoIP Diagnostic communication over Internet Protocol
DOP Data Object Property
DoS Denial of Service
DSA Digital Signature Algorithm
DSDL Document Schema Definition Language
DSGmbH Daten- und Systemtechnik GmbH
DSL Domain-Specific Language
DTC Diagnostic Trouble Code
DTD Document Type Definition
DTP Distributed Transaction Processing

ECM Engine Control Module
ECU Electronic Control Unit
EFI Electronic Fuel Injection
ESB Enterprise Service Bus
ESC Electronic Stability Control
ETL Extract, Transform and Load

FLWOR For, Let, Where, Order by, Return

GDPR General Data Protection Regulation
GFF Guided Fault Finding
gRPC google Remote Procedure Call
GUI Graphical User Interface

HTAP Hybrid Transaction/Analytical Processing
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol

ID IDentifier
IDL Interface Definition Language
IEC International Electrotechnical Commission
IoT Internet of Things
IP Internet Protocol
IPC Inter-Process Communication
ISO International Organization for Standardization
IT Information Technology
ITS Intelligent Transportation System

J1939 Higher layer communication protocol

A Milestone for sustainable Remote Vehicle Capabilities xv

Acronyms

JMS Java Message Service
JSON JavaScript Object Notation
JVM Java Virtual Machine
JWT JSONWeb Token

KWIC KeyWord In Context
KWP 2000 KeyWord Protocol 2000

LAN Local Area Network
LBAC Lattice-Based Access Control
LDAP Lightweight Directory Access Protocol
LIN Local Interconnect Network

MCD Measurement, Calibration and Diagnostic
MDF Module Description File
MIT Massachusetts Institute of Technology
MOA Microservice-Oriented Architecture
MOST Media Oriented System Transport
MQTT Message Queuing Telemetry Transport
MVC Model-View-Controller
MVCC Multi-Version Concurrency Control
MVCI Modular Vehicle Communication Interface

NewSQL NewStructured Query Language
NoSQL Not only Structured Query Language

OASIS Organization for the Advancement of Structured Information Standards
OBD On-Board Diagnostics
ODBMS Object DataBase Management System
ODMG Object Data Management Group
ODX Open Diagnostic data eXchange
OEM Original Equipment Manufacturer
OLAP OnLine Analytical Processing
OLTP OnLine Transaction Processing
OODBMS Object-Oriented DataBase Management System
OSI Open System Interconnection
OSS OnLine Service System
OTA Over-The-Air
OTX Open Test sequence eXchange

PaaS Platform as a Service
PBAC Policy-Based Access Control
PDU Protocol Data Unit
PDX Packaged ODX data
PID Parameter IDentification
PKI Public Key Infrastructure

A Milestone for sustainable Remote Vehicle Capabilities xvi

Acronyms

PPM Prediction by Partial Mapping

R&D Research and Development

RAM Random-Access Memory

RBAC Role-Based Access Control

RDBMS Relational DataBase Management System

RDF Resource Description Framework

ReST Representational State Transfer

RPC Remote Procedure Call

RSA Rivest-Shamir-Adleman

RSU Road-Side Unit

SAE Society of Automotive Engineers

SAN Storage Area Network

SASL Simple Authentication and Security Layer

SDG Special Data Group

SID Service IDentifier

SLA Service Level Agreement

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

SRP Single Responsibility Principle

SSL Secure Sockets Layer

SSO Single Sign-On

STOMP Streaming Text Oriented Messaging Protocol

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TF-IDF Term Frequency-Inverse Document Frequency

TLS Transport Layer Security

TPM Trusted Platform Module

UDS Unified Diagnostic Services

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Infrastructure

VaaS Vehicle as a Service

VCI Vehicle Communication Interface

VIN Vehicle Identification Number

VPN Virtual Private Network

VTD Virtual Token Descriptor

VTD-XML Virtual Token Descriptor for XML

A Milestone for sustainable Remote Vehicle Capabilities xvii

Acronyms

W3C World WideWeb Consortium

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

WLTP Worldwide harmonized Light-duty vehicles Test Procedures

WSDL Web Service Definition Language

XA eXtended Architecture

XML eXtensible Markup Language

XP Extreme Programming

XPath XML Path Language

XQuery XML Query Language

XSL eXtensible Stylesheet Language

XSL-FO XSL Formatting Objects

XSLT XSL Transformations

YAML YAML Ain’t Markup Language

A Milestone for sustainable Remote Vehicle Capabilities xviii

Part I

Context, Background & Objectives

A Milestone for sustainable Remote Vehicle Capabilities 1

Chapter 1

Introduction

If we knewwhat it was we were doing,
it would not be called research, would it?

– Albert Einstein

The fast growing automotive industry is innovation-driven in order to meet and/or to be above
the competition. However, innovations in the automotive industry are increasingly addressing
electronics and Information Technology (IT), making electronic systems and software more and
more indispensable part of many functions of vehicles. As examples of innovations, we can cite
autonomous vehicles, increasing numbers of sensors, adaptive cruise control and electronic braking
systems. A study stated that, within a vehicle the proportion and costs of the electronics between
1990 and 2010 has risen from 16 to over 40% [Krützfeldt, 2014] and is still growing. All these
innovative tools have to be smart designed, implemented in respect of standards and norms and
strictly tested in real-life situations before they can be made accessible to public customers. At the
same time, they must always guarantee customers safety as well as that from other road users
and the environment protection. With these challenges in mind since years, the manufacturers
are working relentlessly to provide not-dysfunctional electronic gadgets, as their advantages are
embraced by the customers only if they do not come with higher dysfunctions in comparison
with those from previous old systems. Apart from safety and comfort services which improve
the user experience, manufacturers must innovate also to reduce the environmental footprint of
their products. As environmental laws are becoming tougher over the time [EU, 2015, EU, 2017a,
EU, 2017b, Yang et al., 2016], Original Equipment Manufacturers (OEMs) must pay special attention
to vehicle emission levels.

On the other hand, customer satisfaction is no longer limited to simple cars. Users are
more and more attracted by services in general, speeding up the evolution towards service
economies [Lankhorst, 2012]. Amongst them, we have namely online capabilities, mobility and
connectivity-based services such as Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2X)
functionalities. One study [Wimmer, 2016] even stated that for competitiveness in the globalmarket,
OEMs should design new strategies to provide more mobility services rather than only simple cars.
This trend reflects on hardware with an ascending number of Electronic Control Units (ECUs) as
well as on software in cars. That is why all modern cars contain a large number of on-board
computers providing services for the driver and performing fine-grained vehicle mechanisms (e.g.
engine control, infotainment functions, driving assistance systems and more). Hence, electronic
systems and software have become an indispensable part of many functions in modern vehicles. To
ensure customer’s comfort, to increase the environmental safety and to comply with the legislation
worldwide, after its conception, vehicle software must be maintained and monitored alongside the
vehicle’s life cycle. As the complexity of vehicle electronics is still increasing, to develop diagnostic
applications and service tools to support these systems is more challenging, especially in terms of
handling the increasing complexity of vehicles’ internal networks of on-board computers.

A Milestone for sustainable Remote Vehicle Capabilities 2

Introduction

The term On-Board Diagnostics (OBD) refers to a vehicle’s self-diagnostic and logging
capabilities. At the outset, OBD consists only of light up warning/malfunction indicators, while
vehicles nowadays contain fast digital communication portswhere diagnostic tools can be connected
and read out the vehicle status. Although numerous vehicle diagnostic services use standardized
communication interfaces required by law, many difficulties remain [Axerot, 2011], such as the
online services mentioned before, the remote access to the vehicles’ diagnostic layer with costs as
minimal as possible. Also, to reduce the complexity of test and diagnostic applications and to fulfill
higher expectations of customers. It is also important for OEMs to offer more features than raw
diagnostic information so that service technicians can perform their work at repair shops with as
few tools as possible. One complex task for service tool developers is to support vehicle variations
involving different communication interfaces, hardware and software.

User’s convenience, safety and environmental compatibility drive new needs, improvements
and requirements in today’s vehicles, which require more and more ECUs. All these ECUs
need custom made tools for software development, calibration, and testing. Earlier, many ECU
manufacturers had to individually develop necessary tools for the whole process. All manufacturers
and OEMs had therefore their own ECUs description formats, diagnosis and communication
interfaces that were not compatible with each other. A single modification in ECU requirements
usually required to develop an entirely new ECU and high costs to update all the tools to handle new
requirements. Moreover, new ECUs required new software for their programming and diagnostic.
Such development cycles was so expensive that manufacturers could no longer afford it.

Relentless innovation, to propose connectivity-based services to customers, to increase user
experience in cars, to evolve towards amobility services provider from simple carmanufacturerwhile
minimizing development costs and reducing the environmental footprint are the biggest challenges
of automakers nowadays. It is to face all these challenges that the motivations of this research work
are born, which we present in the next section.

1.1 Motivations

First, the necessity to redesign the car communication architecture in general to enable
connectivity-based services with costs as low as possible. The benefits of these services are
numerous for customers as well as for vehicle manufacturers. They allow to repair ECU’s software
errors remotely or Over-The-Air (OTA). They also help to increase the user experience. Customers can
be providedwith remote assistance in the field in case of their car breakdown ormalfunction,which is
faster than driving it to a shop for reparation ormaintenance. With remote access to vehicles, it is also
possible to activate new features on vehicles, features that only require software updates/upgrade
without replacing the involved control units. Such a user story could even be commercialized by
automakers to increase their revenue. Consequently, automakers remain competitive and expand
their service portfolio.

Secondly, regulations in automotive industry are becoming stricter over the time. For instance,
the Worldwide harmonized Light-duty vehicles Test Procedures (WLTP) [EU, 2017a, EU, 2017b,
EU, 2015, Yang et al., 2015] aremandatory for all vehicles in Europe as from September 2018. These
procedures introduce more realistic tests such as realistic driving behavior, longer test distances,
oxides of carbon values and fuel consumption for individual vehicles amongst others [ACEA, 2018].
For the special case of emission values, a recall action for vehicles already on streets is very
expensive. The user story consisting in collecting these values in real-time from vehicles is therefore
an advantage for automakers. It might also be a preferable alternative to expensive equipment for
new test procedures as illustrated in [Williams, 2018].

Thirdly, real-time data collection from vehicles is not only for legislation purposes. Car
manufacturers are also interested in gathering continuously other measured values to determine
the current vehicle health. After analysis of the collected data, this can help to perform predictive

A Milestone for sustainable Remote Vehicle Capabilities 3

Introduction

maintenance and anticipate potential failures. A concrete example is the collection and analysis of
trouble codes beforehand, and the driver might be notified if necessary. Moreover, this approach
enables automakers to built a solid data pool for statistics and data analytics filtered byvehiclemodel,
serial number, manufacturing year or any other filter criteria on their entire fleet.

Finally yet importantly, diagnostic applications nowadays are standalone or monoliths. This
architecture requires special hardware testers to be able to communicatewith vehicles for diagnostic
purposes. And, such applications require transfers of large amount of data through the network
for local storage. Besides the decreased maintainability of these applications, they do not
allow to perform online and remote services mentioned above. A new architecture must be
therefore designed to improve the diagnostic process for technicians in repair shops. Furthermore,
maintenance routines of the OEM’s diagnostic software such as publication of new software versions
and update of local databases on each tester is not sustainable anymore for companieswith 80,000+
devices in 21,000+ service partners worldwide.

Some works have been already published in this research area, but as we discuss them
more in details later, they are not suitable for the public market due to high implementation
costs. Additionally, they are not industry-ready since they acknowledged scalability issues of their
deployment context. Furthermore, functions such as vehicle self-diagnostic, remote capabilities
and feature-on-demand should be implemented and available on the market in the foreseeable
future. For instance, vehicles will communicate with an online server through network gateways
as well as exchange data between each other. This aspect is very important for purposes such as
parking assistant, cooperative parking, autopilot and danger detection. This connectivity is also
useful to re-route or forward network packets in case of direct communication between a vehicle
and a gateway is disturbed. These functionalities must also take into consideration new regulation
rules which entered into force since couple of years and potential differences in legislation between
the countries of trade of automakers.

1.2 Goal of this thesis

Thegoal of this thesis is to propose aSoftwareArchitecture forRemoteVehiclesServices, taking into
account the security and scalability constraints and also the new regulation rules. This architecture
must be cost-effective and also compatible with actual systems already in production, since an
interruption of service during the migration to the new system is not affordable. It must also be
scalable and offer high availability to be implemented immediately in the real-world at industrial
scale. Data access have to be secure with high security standards, as confidential data will be
processed. Last but not least, the system must be easily maintainable and extensible to cope with
future requirements, and offer processing time good enough for requests for smooth and convivial
user experience. To illustrate the effectiveness of our software architecture, we built a prototype
as proof of concept and evaluate it against quality attributes of a system in software engineering.
Since the architectural design is a complex task, we divided this goal into four groups of tasks. These
groups are:

• security of OEM’s and system data, which concerns critical data from automakers as well as
vehicle data safety and its transmission. This group contains the first objective O1;

• architecture design principles and up-to-date techniques in software engineering; this group
refers to architectural techniques and principles necessary to build our software architecture.
This group is made up of the objectives O2, O4 and O5;

• communication standards with focus on the communication protocols in the workflow
between the involved third-parties. The objective of this group is the O6;

• software quality attributes, which addresses the performance and efficiency of our software
architecture. This group contains the objective O3.

We explore each of these design objectives in the next section.

A Milestone for sustainable Remote Vehicle Capabilities 4

Introduction

1.2.1 Objectives

To diagnose a vehicle, a tester device must, first of all, be able to communicate with its control
units. That is why a diagnostic application needs information, also called diagnostic data, such
as the communication parameters, the protocol to use, the data exchange format and the how to
build messages that ECUs can reply to. Such information, amongst others, are hidden in vehicle
specification files called vehicle projects. These projects also contains the OEM’s ingenuity and some
manufacturing secrets of ECUs. Consequently, for the manufacturer’s business safety, they cannot
be made publicly available. They are rather shared only with authorized entities and based on a very
strict legal contract. However, to support connectivity-based services such as V2X, many external
third-parties must be involved. These parties also need then such data so that the V2Xworkflow can
be completed. Hence, since 100% of the chain cannot be trusted by the OEMs, the first challenge to
face in this work is to keep their know-how safe in an untrusted environment.

O1: OEM’s know-how safety
To keepOEM’s know-how safe in an untrusted environmentwhile providing
vehicle data from to diagnostic applications.

The concepts needed to meet this objective are data security, access control policies and
communication protocols. These are illustrated in the Figure 1.1.

Figure 1.1: Elements to address the issue about OEM know-how safety.

As briefly presented above, vehicles in the early 1990s had relatively few control units. The
development of new control units and their maintenance were manufacturer-, vehicle model- and
even hardware-specific. This working approach was not only expensive, but also burdensome and
error-prone. To solve these problems, and to break this strong dependence between ECUs and the
compatible communication devices, many International Organization for Standardization (ISO) norms
were published. Amongst these norms, some are even required by the legislation from automakers.
The overall costs were then reduced and the development of ECUs were externalized to various
suppliers which provide cost-efficient solutions. However, diagnostic applications must import the
normalized tools to be able to communicate with the in-vehicle network. They remain therefore tied
to the technology underneath for vehicle communication. This coupling dictate them how theymust
be maintained, i.e. how often they must be updated and the protocol to achieve it amongst others.
Consequently, the development of diagnostic solutions by the suppliers is strongly dependent of
OEMs and the ECU life cycle.

O2: Technological coupling
To ensure loose technological coupling while providing data to diagnostic
applications.

To meet this objective, the concepts needed needed are the domain-driven design and the
microservice architecture as illustrated in the Figure 1.2.

Figure 1.2: Elements to address the issue about the technological coupling.

A Milestone for sustainable Remote Vehicle Capabilities 5

Introduction

This technological coupling has many drawbacks. One is the scalability of the diagnostic
solution. For example, one instance ofOEM’s tool can provide data to onlyone diagnostic application.
Moreover, this instance can only provide communication data from only one vehicle project at a
time. To be able to perform parallel diagnostic with more than one vehicle, as many instances as the
number of vehicles to reach must be instantiated or duplicated. And, the same scalability problem
also occurs when many vehicle models must be reached. With such an architecture, the user story
presented earlier, whereby an automaker has to communicate with a large part of its vehicle fleet to
collect data in the field for instance, cannot be performed sustainably. This is even more critical in
a V2X architecture, since OEMs cannot afford to instantiate their respective tools on each roadside
device to communicate with each their respective vehicles.

O3: Scalability
To design a highly scalable solution to support diagnostic applications with
many vehicles simultaneously without loosing quality of service.

The concepts needed to meet this objective are the microservice architecture and parallel
computing (Figure 1.3).

Figure 1.3: Elements to address the scalability issue.

Diagnostic data are hidden amongst other confidential data in vehicle projects and protected
from unauthorized access. That is why diagnostic tools only authorized by automakers are able
to extract necessary information from this data pool. The current architecture store these vehicle
projects as compressed archives files on a hard disk. Then, a diagnostic tool has to read these files
and eventually encrypt them for safety purposes. When a diagnostic application requires data from
these projects, the files are decrypted by the tools just mentioned. Then, it delivers the demanded
data in a non-standard format (high coupling from above). On the other hand,when an update occurs
in a vehicle project, the whole process is repeated again from the beginning. The time complexity
remains always the same as with a new vehicle project, or even increases if the project became
bigger, since the data storage does not allow an optimized files’ update, i.e the changes of only the
new values. Moreover, due to the increasing complexity of the in-vehicle network, these projects
are becoming bigger. This manner to save such crucial data is arduous and not sustainable, as the
processing time grows with the project’s size. Consequently, one of the critical issues to address is
the data storage.

O4: Data model for vehicle projects
To design a data model that is efficient and sustainable for the storage of
diagnostic data in context of vehicle communication.

The concepts needed to meet this objective are the data layer design and persistence in
microservices. They are illustrated in the Figure 1.4.

Figure 1.4: Elements required to design an efficient data model.

Online, V2X and remote diagnostic services imply hardware devices that are computing
power- and memory-limited. For example, a Road-Side Unit (RSU) for a V2X infrastructure has only

A Milestone for sustainable Remote Vehicle Capabilities 6

Introduction

a dual core at 800 MHz with 1 GB of live memory [Siemens, 2018]. The coupling, the scalability
problems and the data storage policy mentioned above dictate to the authorized diagnostic
applications how they must be designed. This heavy architecture, where diagnostic applications
must import OEM’s tools and the data as local files, cannot be implemented with such RSUs.
Similarly, the required computing capacities are not available in most current vehicle models. In
sum, the current diagnostic architecture is not suitable for connectivity-based services. Since such
services are necessary for automakers to face tough competition, the next objective is to provide
connectivity-based services.

O5: Online and remote capabilities
To design an architecture for vehicle communication to enable online and
remote vehicle capabilities to supportmobility services.

To meet this objective, we need the business layer design, communications protocols and
testing framework. These are illustrated in the Figure 1.5.

Figure 1.5: Elements to address the issue about the remote capabilities.

Despite its limitations aforementioned, the current vehicle communication architecture for
diagnostic is still used globally. That means hundreds of millions of vehicles are still diagnosed with
the old fashion. Although the newarchitecturemust support connected and V2X-compliant vehicles,
other models cannot be left behind. Otherwise, automakers will loose a large part of their current
revenues. However, this constraint to support old vehicle models must also take into account the
cost-effectiveness of the implementation. In order terms, the application of the new architecture
must not require expensive extra hardware equipment on vehicles that are already distributed on
the market. The backwards compatibility is therefore the next objective to meet.

O6: Backwards compatibility
To design a new architecture that is backwards compatible, i.e. that
supports current as well as connected and V2X-compliant vehicle models,
that is as cost-efficient as possible.

The concepts needed to meet this objective are the ISO norms and current diagnostic
procedures. These elements are used to design the diagnostic workflow. How they cooperate is
illustrated in the Figure 1.6.

Figure 1.6: Elements to address the issue about the backwards compatibility.

1.2.2 Goal of this thesis

Communication with vehicles was already normalized through many ISO publications1, from the
physical layer, the communication interfaces, the tools to use, the communication protocols up to the

1See Chapter 2

A Milestone for sustainable Remote Vehicle Capabilities 7

Introduction

data exchange format between third-parties, the sequence of interactions between the diagnostic
components and the communication model in layers, just to mention a few. However, it is up
manufacturers to implement it taking into account their respective context. Unfortunately, current
solutions cannot be used at large-scale, have a low level of portability due to high coupling and the
collaboration between third-parties remains extremely difficult [ISO, 2009, ISO, 2008a, ISO, 2008b,
Volkswagen, 2017, Volkswagen, 2018c, Softing, 2011, API, 2017, Subke, 2008]. Besides, they
do not support remote capabilities mentioned above [Eberspächer et al., 2018, Petri et al., 2016,
Idrees et al., 2011, Johanson et al., 2011, Nilsson et al., 2008, Mahmud et al., 2005]. To achieve the
goal of this research work, which is a Software Architecture for Remote Vehicle Services, the
Figure 1.7 illustrates how the objectives discussed in Section 1.2.1 help to build this architecture
itself. Since the objectives needed to achieve the overall goal of this work are not divided as a
partition, some overlaps between them are possible.

Figure 1.7: The objectives are the building blocks to achieve the goal of this thesis.

A Milestone for sustainable Remote Vehicle Capabilities 8

Introduction

1.3 Contributions of this thesis

In this thesis, we designed a software architecture to tackle the issues of remote vehicle
communication and online vehicle services. We took into account the environmental and industrial
constraints during the design activities2. As proof of concept, we built a prototype which
demonstrates that our solution is ready for use on an industrial scale. In the following sections, we
describe the improvements we made in more details and why our solution is industry-ready.

1.3.1 Cost-efficiency & Compatibility

New trends in the automotive industry are driven with innovations around the terms such as
autonomous driving, Intelligent Transportation System (ITS), remote vehicle diagnostic, OTA vehicle
software updates, cooperative systems,mobility services instead of simple cars (Vehicle as a Service
(VaaS)), environmental footprint reduction, smartphone on the wheels and much more. All these
concepts have one essential building block at their basis: the necessary and indispensable vehicle
communication. Already from a small city-sized scale, an ITS has to handle various vehicle models
from different automakers. For example, a network of RSUs for road traffic optimization and/or
minimize emissions on streets must handle many types of vehicle in a relatively short period of time
(during peak times).

In such a heterogeneous environment, it is not sustainable to keep data necessary for vehicle
communication on each road-infrastructure device. Technically, it is even not possible, since RSUs
are resource-limited hardware. Therefore, data such as communication protocols and parameters
must be made available to RSUs each time an exchange has to take place with a vehicle. In addition,
how to decode and interpret the eventual response of a vehicle is performed by another component
in the processing chain. On the other hand, common vehicle models are neither connected, nor
V2X-compliant. To be compatiblewith an ITS, vehicles fromsuchmodels require additional expensive
hardware extension.

Possible physical location of diagnostic components were proposed in the literature.
Assumptions have been made that the Diagnostic Protocol Data Unit API (D-PDU API) is integrated
into a Vehicle Communication Interface (VCI) device and is a part of the in-vehicle network. More,
this VCI should also be able to communicate with the OEM’s backbone directly. This might be true
in modern vehicle models, which will make vehicle diagnostic trivial with usages based on remote
capabilities by the way, but it is not the case with commonly used vehicle models. Every diagnostic
command coming from the OEM’s infrastructure through eventually a RSU would therefore be
executed by the embedded computer.

One contribution of the non-disruptive solution we provide, namely the Dictionary Server,
that enables vehicle remote capabilities such as remote vehicle diagnostic, remote vehicle
repair and feature-on-demand, without prejudicing OEM’s expertise. It also supports software
updates OTA and traditional diagnostic procedures. In addition, the Dictionary Server helps
automakers to make publicly available vehicles emission levels in the field, as they are henceforth
mandatory in automotive industry. Additionally, on one hand, it provides diagnostic data
to RSUs to support the V2X communication architecture. Data provided are communication
parameters, memory programming data, available ECUs’ functions, Protocol Data Unit (PDU)
requests, translation/decoding procedures, trouble codes and their interpretation, (re-)programming
and flashing routines to name just a few. On the other hand, it also provides this data to almost all
types of clients without requiring dedicated hardware, i.e. it is also compatiblewith resource-limited
equipment such as mobile-end devices.

2See Section 7.1

A Milestone for sustainable Remote Vehicle Capabilities 9

Introduction

1.3.2 Scalability & Availability

The needs nowadays require another approach to use the Diagnostic Server (D-Server), even a new
architecture. There is a way to perform parallel diagnostic communication with many vehicles
through an access point and many Wireless Fidelity (Wi-Fi)-enabled VCIs. However, such solutions
allowto cover atmost tens ofvehicles simultaneously. And, due to the limitation that onlyonevehicle
project can be handle per Modular Vehicle Communication Interface (MVCI) runtime server instance
at a time, these vehicles must be exactly the same type and same model. In case of a newmodel in
the process chain, the MVCI runtime server must be restarted and the corresponding project loaded.
The existing prototypes used a Beagle Bone Black with a printed circuit or a Raspberry Pi connected
to the OBD port of the vehicle. But, the vehicles have to be in the same area covered by an access
point or a 802.11s-compliant relay node and the communication must be synchronous. Theymoved
the MVCI runtime server as-is on a remote server without further improvements. In cases where
manufacturers want to communicate with thousands or millions of their vehicles, a local thick client
is not sustainable.

Automakers are more and more interested by campaigns for many reasons. One of the
campaign types concerns the collection of data, where information is pulled from vehicles. A data
collection campaign is an action or a set of actions triggered by an OEM to gather selectedmeasured
values and driving information from vehicles to have a picture of an area of interest. Then, collected
data is stored and might serve for analytics to answer relevant questions, make predictions about
future trends,make business decisions or even to ensure quality assurance. Another type of campaign
is the data broadcasting campaign, whereby data are pushed towards a set of vehicles. Such
campaigns are useful when an automaker publishes critical software update to fix an issue, instead
of an expensive recall action. In either case, an automaker needs to reach a large part of its fleet.
Another contribution of our solution is that it supports such campaigns use cases, in contrast to the
already proposed solutions as just presented.

Traditional vehicle communication-based applications, e.g. diagnostic applications, require
specialized hardware to contain encrypted vehicle projects, a runtime server instance as an imported
library and the Application Programming Interfaces (APIs) to this runtime server instance. They are
executed as standalone applications and encapsulate the coordination of the components previously
cited. Unfortunately, this architecture does not allow access to vehicles for remote diagnostic and
remote capabilities at large scale. Also, diagnostic applications are technologically coupled to their
MVCI instances, which decreases their maintainability.

Due to this high technological coupling, diagnostic applications based on this architecture have
a scalability problem. For instance, one diagnostic application can work with only one vehicle at
a time in the worst-case scenario. Even with the proposed solutions for parallel diagnostic just
mentioned, the vehicles to reach have to be the samemodel and type in the best-case. Our solution,
one diagnostic application is able to communicate with many vehicles simultaneously. There is no
need to restart the Dictionary Server or to reload the corresponding project when the vehicle to
address changes during runtime. Therefore, the various vehicles to communicate with can be from
different models and types. A request from a diagnostic application is replied after only few queries
to the persistence tiers of the Dictionary Server. Hence, the scalability of our solution is limited only
the hosting environment where it is deployed.

On the other hand, from the server’s side point of view, the drawbacks named before indicate
that an instance of the MVCI runtime server can provide data to only one application. Additionally,
this exchange takes place in a domain-specific data format. With our solution as a runtime server
remotely accessible, one instance is able to servemanyapplication clients. Due to the protocol- and
technology-independent data exchange format between the Dictionary Server and the clients,
many types of diagnostic applications are supported, no matter in which technology there are
implemented. In this way, themaintainability of clients is enhanced, since it does not depend from
the data provider runtime server anymore.

A Milestone for sustainable Remote Vehicle Capabilities 10

Introduction

1.3.3 Runtime Complexity

Vehicle projects, which are the input of the usual MVCI runtime server, are created by the Research
and Development (R&D) department and stored as compressed archive. Each project is made up of
several ECU’s specification files in an eXtensible Markup Language (XML) format. During its life cycle,
such a project is shared only to authorized third-parties in this format through various on- and offline
media. But as mentioned before, such vehicle projects contain the OEM’s know-how. Therefore,
they should be encrypted into proprietary formats before making them available to other parties.
Many of the world’s biggest automakers, namely the Volkswagen Group, the Daimler Group and the
Bayerische Motoren Werke (BMW) Group, used this possibility to implement the so called runtime
data. To summarize the project’s path from the R&D up to (diagnostic) application clients at the
other end of its life cycle, the following steps are usually executed:

• creation and archive compression at the R&D department;
• transmission as input data to the MVCI runtime server;
• encryption of the input data into a runtime format;
• transportation of both runtime data and MVCI runtime server to other authorized third-parties;
• decryption of runtime data when a request from an application client comes;
• providing requested data to the application client.

Theses steps are almost imposed by the storage mode of vehicle projects, specially the reversible
encryption of data for the know-how protection. With time complexity of operation on files on the
disk that could be up to O(n), and that of encryption algorithms up to O([log(n)]3), whereby n is the
input size, the time complexity of the whole process might grow up to a cubic factor.

In our solution, these vehicle projects are stored in a database. Because of the rigidity
of schemas and the time-intensive join-requests in Relational DataBase Management Systems
(RDBMSs), we selected a Not only Structured Query Language (NoSQL) one for the persistence tiers.
Such DataBase Management Systems (DBMSs) provide more flexibility with dynamic schemas. They
are also more scalable and more suitable for the hierarchical data storage. Additionally, they enable
a time complexity of O(1) to retrieve one vehicle project. Because of the inheritance hierarchy
between the elements in vehicle project’s elements, we stored them in a tree structure. By this
way, retrieving an element within a project with a time complexity ofO(log(n)) is feasible.

Due to the transportation of tools necessary to access to diagnostic data hidden in vehicle
projects by the application clients as alreadymentioned above, these clientsmust have some amount
of disk space. The required disk space for using the usual MVCI runtime server on clients depends
on how many vehicle models they intent to support. Just as example, the diagnostic software
application at the Volkswagen Group requires more than 8 Gb of disk space besides the application
itself, to be able to support all the brands of this company (as stand on December 2018). With our
solution, this is not necessary anymore. Aside from the space used for data caching eventually, an
application client needs the space only for the application itself, i.e. no additional disk space is
mandatory at the runtime.

1.4 Non-functional requirements

To achieve the goal of this thesis mentioned in Section 1.2.2, we must also consider some
non-functional requirements. Besides the functional requirements that made up the objectives of
this work, non-functional requirements describe properties of a system as a whole or of a particular
aspect, without referring to a specific function. Non-functional requirements are the criteria to
evaluate the performance of a system and a software system must meet certain quality attributes
in order to meet non-functional requirements. Therefore, it is one of best practices in system
engineering to look for non-functional requirements to meet during the architectural design of a
system. When we applied this rule in our context of software engineering, we came out with the
following requirements:

A Milestone for sustainable Remote Vehicle Capabilities 11

Introduction

1.4.1 Security

The first one is the security of the access to data. The new architecture is intended to provide data
to many types of diagnostic applications. In such a heterogeneous and crowded environment, the
security of access and exchanges is crucial. The OEM side must be able to identify securely and
reliably which entity is asking diagnostic data and for which purposes. On the other side, diagnostic
applications must be sure that data they received are not corrupted, but are rather trustworthy and
come really from the OEM they requested. Thus, the communication channel between OEMs and the
application clients must be secure.

1.4.2 Compatibility

Online and remote capabilities include low computation power- and limited memory-enabled
devices as important components in their workflow. For example, in a V2X architecture, it is up
to the RSUs to communicate directly with vehicles on the road. But they are resource-limited
[Siemens, 2018] and therefore cannot host memory-greedy diagnostic applications. On the other
hand, one of the constraints of remote capabilities requires to break the hardware dependence. OEMs
cannot affort a recall action for the installation of diagnostic hard- and software in vehicles already
sold. They cannot neither impose customers to have diagnostic-dedicated devices required by the
current architecture. But, it is preferable/easier to includemobile-end devices in the architecture for
remote functionalities. By this way, customers smartphones might be used as a stopover to reach
their respective vehicles OTA.

Diagnostic applications nowadays use the OEMs’ tools as an internal library in their
implementation (technological coupling mentioned earlier). That is why they require specialized
devices that can be manipulated only by trained and experienced technicians in repair shops.
However, to support online services and remote capabilities, customers must also be involved in
the procedure. That means, the new architecture must take into account the infrastructure already
in place, and avoid any additional equipment. For these reasons and, as a consequence of the
requirements above, the implementation of the new architecture at the OEM side must be designed
so that the vehicle communication data in general, and particularly the diagnostic functions are
accessible remotely, or online.

1.4.3 User roles

With the objectives presented in Section 1.2.1, whereby many more third-parties are intended to
be involved, the users database grows. This growth of application clients comes also with security
challenges. One step to face them consist in the segmentation of the users set into roles or groups.
By this way, users can be clustered into setswere their actions could bewell-defined and supervised.
For instance, a vehicle customer cannot have the same possibilities and features of an experienced
technician who is working on many vehicle models daily. Or, a service provider does not have the
same focus as a data collection campaign manager. That is why the segmentation of users is crucial.
In this work, we identified these users groups amongst the potential application clients.

1.4.4 Data consistency

The design we proposed is based on the concept of distributed systems. A system is distributed
when its components are (physically or logically) located on different computers, interacting
with one another in order to achieve a common purpose. Not to be confused with parallel
computingwhere all processing units may have access to a shared memory to exchange information
between each other [Papadimitriou, 1994]. The significant characteristics of distributed systems
are the concurrency of components, the absence of a global clock, and the independent failure
of components [van Steen and Tanenbaum, 2017]. Thus, the various parts of the business logic
must be coordinated to ensure the whole system integrity. To develop such systems is particularly

A Milestone for sustainable Remote Vehicle Capabilities 12

Introduction

challenging, since it appeals to the Remote Procedure Call (RPC) mechanisms. Moreover, when the
business logic uses a persistence tiers, due to the independence of its parts from each other, the
whole data logicmust bemaintained in a consistent state. Otherwise, the reactions of such a system
are unpredictable.

1.4.5 Quality attributes

Like any other software product, the proof of concept we implemented must comply with software
quality attributes. The software quality model is made up of properties categorized into eight
characteristics, where each is composed of a set of related sub-characteristics [ISO, 2011d]:

• functional suitability defines the degree to which a system fulfills the functions that meet
the needs when used under specified conditions. Functional suitability is only concerned with
whether the functions meet stated and implied needs, not the functional specifications;

• reliability relates the system’s degree to perform specified functions under predefined
conditions for a defined period of time. Reliability might be negatively impacted by faults in
requirements, design and implementation, or by contextual changes;

• performance efficiency evaluates the amount of resources used under stated conditions.
Resources can be other software products, soft- and hardware configurations of the system,
and any other peripherals;

• usability represents how a system can be used by specified users to achieve predefined goals
with effectiveness, efficiency and satisfaction in a context well-defined beforehand;

• security illustrates how a system protects information and data so that external entities
(persons, components, other systems) have the appropriate levels of authorization to access
to data they need. It also applies to data during transmission;

• compatibility reflects the degree to which a system can cooperate with other products,
systems or components, while sharing the same hardware or software environment;

• maintainability reflects the degree of effectiveness and efficiency with which a system
can be modified by the intended maintainers. Changes include corrections, improvements,
installation of updates and upgrades, adaptation of the system to adjustments in environment,
in requirements and in functional specifications;

• portability describes the degree of effectiveness and efficiency with which a system can be
transferred fromone hardware, software or other operational or usage environment to another.

In the evaluation section, we confront our prototype against these quality attributes.

1.4.6 Maintainability & Extensibility

Last but not least, as a consequence of the backwards compatibility, the solution must also be
non-disruptive. There are already thousands of running diagnostic applications that generate
additional income. The OEMs cannot affort a shutdown, or even a downtime of these applications for
few hours due to the implementation of a new architecture. As mentioned above, it is not affordable
to force existing solutions to stop and to adapt their respective business logic (hard- and software)
to the new solution. The new architecture must foresee and anticipate rapid developments such as
self-diagnostic functions, parking assistant, cooperative parking, autopilot, danger detection just to
mention a few, while interacting with heterogeneous platforms from various third-parties. More,
due to technical and security reasons, such radical changes cannot happen overnight.

1.5 Outline of this thesis

We divided the remainder of this document into four parts. The part II discusses fundamentals in
the automotive industrywith focus on vehicle communication on one side. On the other, we present
some concepts in software engineering in relation with distributed systems:

A Milestone for sustainable Remote Vehicle Capabilities 13

Introduction

• in Chapter 2 we present the various ISO norms and standards that are necessary for a
standardized vehicle communication, from data exchange to communication protocol and
vehicle project’s life cycle. The various implementations of these norms conclude the chapter;

• in Chapter 3 we discuss the concepts related to microservices and distributed systems. It
starts with definition of terms, then follow differences between the approaches in distributed
systems. After that, the design principles, the various communication technologies in such an
architecture and how to discover services conclude the chapter;

• in Chapter 4 we discuss the persistence in distributed systems and how challenging it is to
ensure data integrity and consistence is such systems. Some solutions are also discussed to
address these issues;

• in Chapter 5 we discuss tools and utilities that help to meet non-functional requirements in a
distributed environment. Then follow test procedures and guidelines to conclude this chapter;

• in Chapter 6 we discuss different database philosophies in order to select which one to use for
our solution. We also discuss an architectural comparison between them. We then present
various data security requirements, aspects, policies and tools that help to implement data
protection in distributed systems. After that, we present some optimizations for retrieving data
from database engines. Other types of datastores conclude this chapter.

In part III we present our solution, from the architectural design down to fine-grained design of
various parts of the solution we propose and subdivided into following chapters:

• in Chapter 7we present our solution itself, startingwith its physical architectural design. Then,
we present a detailed conception of its building logical blocks. Thereafter, we present the
different sub-modules making up the main algorithm of the business logic. We discuss how
they are coordinated following a sequence diagram. We conclude this chapter by describing
the data security design through various role-based access control;

• in Chapter 8 we present the persistence logic or the data model design. We started with a
detailed description of its core entities, as they are crucial for the entire vehicle communication
system. Then, we present our design of the datamodel to implement in the selected datastore;

• in Chapter 9 we present how we implemented the prototype. We started with a description
of security policies access to the system. Then, we present utilities that help to meet
non-functional requirements in a distributed system. After that, we go more in details and
present the micro-design of our solution, i.e. the smallest building element of our architectural
design. Next, we present the logical architecture and a thorough description of each of its
components. The implemented security measures conclude the chapter.

In part IV we present the development process and the tools we used for it. Then, we present the
tests we made and discuss the results of a comparative study. This part is divided into following
chapters:

• in Chapter 10 we discuss about the development and implementation of the prototype itself.
We present the technological tools we used for the implementation and explain the choices
we made. Then, we present the detailed implementation of each logical submodule described
in Chapter 7. This chapter is concluded with a description of how diagnostic applications
communicate with our solution to perform diagnostic and communication-based services;

• in Chapter 11 we perform a benchmark analysis of our solution against existing ones. On
one hand, we evaluate our prototype on performance and efficiency criteria. On the other,
we also evaluate it on non-functional requirements, such as the quality attributes in software
engineering. Then, we discuss how we achieved the objectives presented in Section 1.2.1. A
spectrum of further applications of our architectural design concludes this chapter.

In part V in Chapter 12, we finally conclude this research work. It begins with an overview and
summary of thiswork and its main concepts. We also present the benefits of our architectural design
has over previous work in the domain of vehicle communication. After depicting directions of future
work, we provide appendices as further prerequisites and fundamentals of this work.

A Milestone for sustainable Remote Vehicle Capabilities 14

Part II

Fundamentals

A Milestone for sustainable Remote Vehicle Capabilities 15

Chapter 2

Norms & Standards in Automotive
Industry

No one wants to learn by mistakes, but we
cannot learn enough from successes to go

beyond the state of the art.

– Henry Petroski

Demand for ECUs in automotive industry is still growing due to new needs, improvements
and requirements in today’s vehicles, regarding user’s convenience, safety and environmental
compatibility. In 2009, there were already more than 80 ECUs in a car [Ebert and Jones, 2009]. All
these ECUs require custom-made tools for software development, calibration, and testing. Earlier,
many ECU manufacturers had to individually develop necessary tools for the whole process. This
led to all manufacturers and OEMs having their own ECUs description formats, diagnostic and
communication interfaces that were not compatible with each other. A single change in ECU
requirements could lead to the development of an entirely new ECU. Or, it could also lead to great
efforts to update all tools to handle these new requirements, which takes much time and money.
On the other hand, ECUs of passenger and commercial vehicles must be diagnosed, configured and
programmed with new software. These use cases are performed through serial bus communication
on established vehicle busses like Controller Area Network (CAN), K-Line or even Ethernet for the
most modern vehicles. In the next section, we describe the various vehicle communication protocols
and how they intervene in a vehicle diagnostic procedure.

2.1 Vehicle diagnostic and vehicle communication

In the literature,we can read in amore general sense that diagnosis or diagnostic refers to the review
of information about a situation, assigning phenomena and features to a category of a classification
system. In the automotive industry, [Bavalia, 2016, Krützfeldt, 2014] define it as a process capable
of identifying an issue or a problem by observing systems.

Also calledOn-Board Diagnostics, it refers to a vehicle’s self-diagnostic and reporting aptitude
[Werner and Ralf, 2014]. The amount of diagnostic information available via diagnostic systems has
varied widely since their introduction in the early 1980s versions of on-board vehicle computers.
These early versions would simply light up warning/malfunction indicator(s) if a problem was
detected but would not provide any information such as what the issue is. Nowadays diagnostic
systems implementations use digital communications to provide real-time data in addition to a
standardized series of Diagnostic Trouble Codes (DTCs), which allow to rapidly identify the cause
and remedy malfunctions as soon as possible within the vehicle.

On the other hand, [Bavalia, 2016, Werner and Ralf, 2014, Krützfeldt, 2014] distinguish this

A Milestone for sustainable Remote Vehicle Capabilities 16

Norms & Standards in Automotive Industry

type from Off-Board Diagnostics which includes all content, information and tools that access the
vehicle from outside, likeworkshop’s testers or emission control equipment. Another classification is
the distinction between the regulated-by-law-peripherals diagnostics and themanufacturer-specific
diagnostics. The first type is primarily guided by diagnosing systems and components influencing
emission control. They should be implemented by monitoring and reading values related to legal
specifications across constructors. Example of manufacturer-specific diagnostic devices could
be those for the door control, for control units of enhanced functions, or multimedia or also of
assistance systems, are not usually performed in accordance with released and unified standards
and protocols [Krützfeldt, 2014] published by internationally recognized institutions as discussed in
Section 2.2.

2.1.1 Diagnostic protocols

For data exchange, transport and communication protocols must be designed. Since the last decade,
many of them were developed such as the CAN protocol, the Local Interconnect Network (LIN)
protocol, the FlexRayprotocol, theUnifiedDiagnostic Services (UDS) protocol and theMediaOriented
System Transport (MOST). Before going into details, let us have first a brief overview on how the
network within a vehicle is built.

In the 1990s at the advent of ECUs in vehicles, all of them were connected only via a single
bus system (Figure 2.1). With the increasing electronic parts on vehicles, there was a need for
more and more control units: relying on only a single bus was not sustainable anymore. The
conceptual innovation race started to design more efficient bus architectures in the automotive
industry. Shortly after their implementation, systems have high rate of errors due to collisions
of messages during communication between ECUs. Additionally, their complexity increases and
their maintenance required more and more resources. Adding new bus systems to such early
communication networks was burdensome due to their lack of extensibility. Thus manufacturers
adopted from the 2000s a structured architecture, in which the ECUs are regrouped relatively to
their application area and the individual bus systems were coupled together via a central gateway
(Figure 2.2). This architecture has survived many years [Bavalia, 2016], and is used till today in
most vehicle model [Bavalia, 2016, Werner and Ralf, 2014]. However, designs were updated to add
Ethernet capability which are implemented in the most modern vehicles nowadays.

Figure 2.1: Central gateway architecture [Werner and Ralf, 2014]. ECUs are reachable
from the outside exclusively from a unique gateway.

A Milestone for sustainable Remote Vehicle Capabilities 17

Norms & Standards in Automotive Industry

Figure 2.2: Multigateways architecture [Werner and Ralf, 2014]. ECUs are grouped by
functions under sub-gateways. Off-Board testers communicate only with the

diagnostic gateway via the diagnostic bus.

In current vehicle models, there are usually the following bus systems. LIN, which connects
sensors and actuators to a control device. Because of its very low bandwidth (up to 20 Kbits/s), it
cannot be used where high data rates are required [Werner and Ralf, 2014]. CAN was developed to
reduce the amount ofwiring in the vehicle by Robert Bosch, implemented in collaboration with Intel
and standardized later by ISO, and is a “must-have” in the US since 2010 [Krützfeldt, 2014]. With a
bandwidth up to 1 Mbits/s, its properties are real-time communication, flexibility in configuration,
multi-cast reception with time synchronization, multi-master transmission, error detection and data
consistency [Werner and Ralf, 2014]. Its downsides are the latency and due to its prioritization
rules, low priority messages could never reach where they are supposed to. FlexRay offers a bit
rate up to 10Mbits/s and due to the Time Division Multiple Access (TDMA), it is a deterministic
vehicle bus, i.e. a node is allowed to send data only during its time range, unlike the event-driven
CAN [Werner and Ralf, 2014]. By this way, collisions can never happen. More, it is able to handle
communication between many control units with a high fault-tolerance. FlexRay was extended to
the version 3.xwith a higher bit rate. MOSTwas designed for telematics andmultimedia applications
such as car radio, car phone, DVD Player, navigation system and on-board TV. It is capable to
exchange frames at a rate up to 150 Mbits/s. There are a lot of efforts to use Ethernet (Open
System Interconnection (OSI) level 1 to 4) in cars in long run. This bus system offers a very high,
constantly increasing bandwidth and is very cost-effective [Werner and Ralf, 2014]. However, some
automakers the Volkswagen Group for instance, are a step forward in this direction with their new
carmodel series [Volkswagen, 2016]. The Table 2.1 summarizes all these aspects of communication
protocols.

A Milestone for sustainable Remote Vehicle Capabilities 18

Norms & Standards in Automotive Industry

Max.
Protocols

bandwidth
Pros Cons

LIN 20 Kbits/s
• Almost half cheaper as CAN;
• Useful for not-critical ECUs like
doors, windows, lights...

• Very low bandwidth;
• Requires too many wires;
• Error-prone;
• Small messages size (8 Bytes).

CAN 1 Mbits/s

• Error detection in messages;
• Very low residual error probability
[Werner and Ralf, 2014];

• Up to 64 Bytes per message with
CAN FD*.

• Periods for sending messages lead
to latency;

• Low priority messages may be lost
due to the collision management
rule [Werner and Ralf, 2014].

FlexRay 100 Mbits/s
• TDMA allows to avoid collisions;
• Error detection in messages;
• Up to 262 Bytes per message.

• Processor on the bus is necessary;
• No send retries in case of error like
with CAN.

MOST 150 Mbits/s
• Error detection in messages;
• Acknowledgment of receipt.

• Up to only 69 Bytes per message.

Ethernet 100 Gbits/s†
• Implementation of the OSI model;
• Full-duplex communication;
• Longermessages (up to 1,500 Bytes
as payload).

• A switch-based network is
necessary to decrease the latency;

• Hardware upgrade necessary to use
the full bandwidth.

* CAN FD: CAN with Flexible Data-rate, developed with a Bosch concept [Werner and Ralf, 2014].
† In vehicle bus systems, only the <10/100 Mbits versions are still used.

Table 2.1: Current communication protocols in vehicle bus systems
[Werner and Ralf, 2014].

2.1.2 Diagnostic workflow

To perform a vehicle diagnostic, many components must communicate with each other. According
to the type of hardware, one or a set of protocols described in Section 2.1.1 can be used during the
diagnostic procedure. The illustrated in the Figure 2.3 present the steps that are usually performed
during a vehicle diagnostic:

• vehicle identification retrieves the characteristics of the vehicle to be diagnosed. These
characteristics allow to select diagnostic and repair resources that suit the current vehicle.
These characteristics are ideally determined by reading the Vehicle Identification Number (VIN)
automatically, but this number can also be entered manually if necessary;

• vehicle system tests: during this phase, all installed vehicle’s ECUs are inquired systematically.
It relies on previous step because the list of theoretically installed ECUs can only be known after
the vehicle has been identified. Sequential interrogation of individual ECUs detects which are
actually present in the vehicle, which have fault memory entries, and their respective versions
involved;

• symptoms selection: here, the possible symptoms related to the vehicle are shown to the user.
The user can select any symptoms from the list, and these are then added to the list of perceived
symptoms;

• test agenda: after the perceived and self-diagnostic symptoms have been collected, the user
can outline the test schedule;

• functional tests have to be executed To reduce the number of suspected candidate symptoms.
The technician can then choose which parts of the vehicle to investigate deeper until the fault
is found and repaired;

• repair: necessary repair tasks are performed by the technician. These tasks include changes of
vehicle parts, reset of trouble codes, flash and/ormemory programming. In case a fault cannot
be repair directly, the technician schedule it for later;

A Milestone for sustainable Remote Vehicle Capabilities 19

Norms & Standards in Automotive Industry

• send protocol: all the performed actions on the vehicle are well documented in the vehicle
history for traceability in case of further diagnostic. This documentation is to send to the vehicle
manufacturer as protocol, which can be used for optimization purposes. This protocol is made
up of information compiled automatically in the course of a diagnostic session and input from
the technician (successful repairs, improvement suggestions, installed parts, comments).

Figure 2.3: Steps of a guided vehicle diagnostic [Azarian, 2009]. There are other
variants of this workflow, as each automaker decides the sequence of these steps.

2.1.3 Diagnostic services

Each OEM implements diagnostics protocols on its own way, despite a common goal. Even though
such differences, all ECUs must fulfill common diagnostics standards. Consequently, a system has
to be designed to support a broad spectrum of diagnostic functions: this was the birth of the UDS.
This protocol, codified in ISO 14229-1:2013 [ISO, 2013a], is a communication protocol used for
diagnosis of control units in vehicle electronics system. Typical ECUs functions are Electronic Fuel
Injection (EFI), automatic gear box, Anti-lock Braking System (ABS), all connected to a serial data
link. The Diagnostic communication over CAN (DoCAN), also called “UDS on CAN” is specified in ISO
15765-3:2004, revised by ISO 14229-3:2012 [ISO, 2013b].

Automotive diagnostics is a field of investigation and testing to detect potential issues within
a car through reading the status of various vehicles’ subsystems. If there are issues, the goal is to
determine their probable causes and propose sustainable and adequate solutions. Communication
in automotive diagnostics is information exchange through a specific protocol and data format
between vehicle’s electronics and testing equipment. It is like reading and writing into memory
of ECUs and interacting with other programs in control units. Most of modern vehicles are already
UDS protocol-capable. The bus architecture that supports it consists in a central gateway which
ensure message routing within ECUs and diagnostic equipment, but also the security and access
management. As the diagnostic tester does not always support the protocol used to communicate
with a specific ECU during a diagnosis phase, there is a need to convert each packet from diagnostic
devices to the ECU and vice versa. As example, for a diagnosis through an ECU that supports FlexRay,
the services must send a request via the software gateway from the test equipment. Then, software
gateway has to route the packet accordingly to the FlexRay target address [Bavalia, 2016]. The
same process is executed in the reverse order to send back the response to the diagnostic tester.
This two-ways conversion leads therefore to delay in results that may not be accurate anymore or
even worst, terminated with a timeout error. For security purposes, UDS also specifies different
sessions when a diagnostic tester is allowed to request only specific set of diagnostics services

A Milestone for sustainable Remote Vehicle Capabilities 20

Norms & Standards in Automotive Industry

to ECUs. The different sessions are the Default Session, Programming Session, and the Extended
Diagnostic Session. In addition to these, some vehicle manufacturers implement some specific ones
[Bavalia, 2016].

Each bus communication protocol defines how message frames must be build to be
understood by the ECUs, i.e the headers, the payload, the trailer with eventually a checksum for
error detection mechanism. Besides the headers, the first bytes of a frame’s payload, which contain
the Service IDentifier (SID) for requests (respectively for responses), are standardized. As example, a
non-exhaustive list of those of the UDS protocol are illustrated in the Table 2.2.

Function group Request SID Response SID Service Description

0x10 0x50
Diagnostic Session

Control
0x11 0x51 ECU reset

...

Control of the
diagnostic session

0x28 0x68
Communication

Control

0x83 0xC3
Access Timing
Parameters

Diagnostic and
Communications
Management

...

Control of the
communication bus

0x22 0x62
Read Data
By Identifier

0x23 0x63
Read Memory
By Address

0x2A 0x6A
Read Data By

Identifier Periodic

Data
Transmission

...

Reading and writing
of measured values

and ECU data

0x14 0x54
Clear Diagnostic
InformationStored Data

Transmission
0x19 0x59

Read DTC
Information

Reading and writing
of the error memory

Input/Output
Control

0x2F 0x6F
Input/Output

Control
By Identifier

Control of the
bus signals

Remote Activation
of Routine

0x31 0x71 Routine Control
Execution of
ECU routines

0x34 0x74 Request Download
0x35 0x75 Request Upload
0x36 0x76 Transfer Data

Upload/Download

...

Reading and writing
large data blocks

(flash programming)

Table 2.2: A non-exhaustive list of normalized UDS. The complete list is available at
[ISO, 2013a, Werner and Ralf, 2014].

Although many different diagnostic protocols are used for the communication between an
external test device and the ECUs, they have something in common: the data stream is hexadecimal
encoded and cannot be interpreted without detailed documentation of the data content. Before
the standardization of the Association for Standardization of Automation and Measuring systems
(ASAM) Measurement, Calibration and Diagnostic (MCD)-3 D, it was a common practice to implement
diagnostic, flash reprogramming and configuration applications on the basis of this hexadecimal
data. With the complexity of ECUs still growing, their high number of variants and shortened

A Milestone for sustainable Remote Vehicle Capabilities 21

Norms & Standards in Automotive Industry

development cycles, it is virtually impossible to continue implementing diagnostic applications using
this process. By creating standards for describing an ECU and its interfaces, considerable amount of
time and cost is saved, during the design of new ECUs as well as in their diagnostic phase. Following
are the organizations which proposed standards in vehicle communication area.

2.2 Standardization organizations

This standardization is the main goal of the ASAM. One of their publications is the standard about
ECU’s description in a XML format, namely the Open Diagnostic data eXchange (ODX) standard.
Released as ISO norm 22901-1:2008 [ISO, 2008b], it describes data relevant to vehicle diagnostics
and was conceptualized as an open format for exchanging diagnostic data between automotive
OEMs, control units and tool suppliers. We discuss the important parts of this norm in the following
section.

There is also the Society of Automotive Engineers (SAE) International. This group, founded
in 1905, is a U.S.-based, globally active professional association and standards organization for
engineering professionals in various industries with more than 128,000 members globally. Its
principal emphasis is placed on transport industries such as automotive, aerospace, and commercial
vehicles [SAE, 2019]. SAE International coordinates the development of technical standards. This
organization publishes standards based on best practices identified and described by its committees
and task forces that are composed of engineering professionals from relevant fields. Under the
norms they published, the most relevant for us is SAE J1939 which discusses about serial control
and communications heavy duty vehicle network. This standard is a wide set of rules describing the
diagnosis for commercial vehicles and agricultural machinery [SAE, 2018, Krützfeldt, 2014].

Another important institution which aims to normalize diagnostics in automotive industry
is the AUTomotive Open System ARchitecture (AUTOSAR) Group founded in 2003. It is a
worldwide development partnership of vehicle manufacturers, suppliers and other companies from
the electronics, semiconductor and software industry [AUTOSAR, 2019]. Its main purpose is to
simplify the data exchange between different ECUs. The description methods are defined based
on common software architecture with a uniform description and configuration format. The
objectives include the scalability to different vehicles and platforms, the portability of software,
the consideration of availability and safety requirements, collaboration between various partners, a
sustainable utilization ofnatural resources, themaintainability throughout thewholevehicle life cycle
[AUTOSAR, 2019]. The partners are manufacturers of automobiles, control units, development tools
andmicro-controllers, separated in fourgroups: Core Partners, PremiumPartners, Associate Partners
and Development Partners [AUTOSAR, 2019]. They collaborate together to publish norms such as
ISO 13209, which describes diagnostic workflow, tests processes and the data model. AUTOSAR
uses a three-layered architecture [Much, 2011, Wiesbaden, 2013]:

• basic software layer,which regroups standardized softwaremoduleswithout any functional job
itself and offers services necessary to run the functional part of the upper software layer. This
layer is made up of system services such as diagnostic protocols (e.g. CAN, LIN, FlexRay...),
communication framework, network management, Operating System and micro-controller
abstraction layers;

• runtime environment: middleware that abstracts the network topology for the ECU data
exchange from the application software components on one hand, and from the basic software
and the applications on the other hand;

• application layer is made up of application software components that interactwith the runtime
environment.

From a legal perspective, each country defines what is controlled and how it should be performed.
For instance, in Germany, a main vehicle inspection must include the following steps: subject and
execution of the checkup, its scope, evaluation of detected faults and issues, and the criteria of

A Milestone for sustainable Remote Vehicle Capabilities 22

Norms & Standards in Automotive Industry

the inspection [Krützfeldt, 2014]. As the automotive industry proposed also its products on the
international markets, manufacturers have to take into account the various legislation in countries
where they want to export their vehicles. To ease international trade, the United Nations Economic
Commission for Europe and the European Union aim to publish norms to harmonize vehicle
diagnostic in Europe and tests criteria for imported vehicles. Looking further, the European Union
collaborated with Japan, Canada and People’s Republic of China to conclude a common agreement
on security and environmental regulations, namely the WLTP [ACEA, 2018], although the USA keeps
clinging to its own certification system [Krützfeldt, 2014].

The officially recognized institutes for tests and diagnosis such as the vehicle inspection
authority (TÜV in Germany for instance) are required to present credentials of performed checks.
The guidelines of a hardware aswell as softwaremajor inspection are the construction and operative
rules, conditioning and road tests, regulations of checkups, declaration of detected and assessment
of deficiencies, and catalog of faults detected during a checkup. These steps must be part of the
guiding principle in vehicle diagnostic even for manufacturers’ intern purposes. However, inspection
systems are generally manufacturer-specific, if not even vehicle-series-specific. Fortunately, OEMs
provide regular software updates that consider new vehicles models and variants.

Thanks to the growing network connectivity, authorized repair shops are nowadays connected
to a customer database, where accounting and calculative elements stored on a centralized server
and well documented to offer better response time in case of issues, by inferring on data collected
before and anticipating on future demands. Though proprietary diagnosis hardware, there are
also independent tools that are many manufacturers systems-compatible with eventually free
software [Krützfeldt, 2014]. In addition, software for such open to the grand public devices is more
and more developed to support connectivity with mobile devices such as smartphones or tablets
through Wireless Local Area Network (WLAN) or Bluetooth. But possible actions to these lambda
users with such devices are very limited to start the engine or open/close windows for instance
[Kickstarter, 2019]. Actions such as flashing or reprogramming ofECUs are only available in restricted
mode with manufacturer-specific devices to avoid unauthorized access.

2.3 ISO 22901-1: ODX – Data model specification

To make diagnostic data stream information available to diagnostic tool applications manufacturers,
and to simplify the support of the aftermarket automotive service industry, the standard ODX, also
called ASAM MCD-2 D, was specified in [ISO, 2008b]. The standard contains the data model which
describes diagnostics capabilities of physical ECUs needed throughout the life cycle of a vehicle
from development, testing, production to after-sales and service. Diagnostic information is made
up of DTCs, diagnostic requests and responses, communication parameters, identification data,
input/output parameters, ECU configuration and memory programming data amongst others. ODX
is formally described in Unified Modeling Language (UML) diagrams and the data exchange format
uses XML. [ISO, 2008b] ensures that diagnostic data from any vehicle manufacturer is independent
of busses, of the testing hardware and of the protocol software supplied by any test equipment
manufacturer.

2.3.1 ECU life cycle

Engineering, manufacturing, and service define communication protocol and data to be
implemented in the ECU. This information will be documented in a structured format by an ODX
authoring tool utilizing XML. It is possible here to develop tools that make use of ODX files and
to generate software for ECUs. Moreover, the same ODX file is used to setup the diagnostic
engineering tools toverify correct communicationwith the ECUand to perform functional verification
and compliance testing. Once all quality goals are fulfilled, the ODX file may be released into a
diagnostic database. This diagnostic information is now available to manufacturing, services, OEM

A Milestone for sustainable Remote Vehicle Capabilities 23

Norms & Standards in Automotive Industry

franchised dealers, and after-sales service outlets via various on- and offline media [ISO, 2008b].
This is illustrated on Figure 2.4. MVCI hardware and software are used at service shops for vehicles
diagnosis and procedural testing. The reliability of the data is maintained while they use the same
engineering, manufacturing, and service functions as those used for individual ECU testing.

Figure 2.4: Usage of ODX in the ECU life cycle
[ISO, 2008b, Supke andWerner, 2011a, Axerot, 2011].

2.3.2 Overview of the ODX components

Since XML is used as data exchange format, the standard also provides an XML schema to use to
build ODX files. A simplified version is illustrated in the Figure 2.5. The ODX structure is made up of
sub-components described as follow:

• VEHICLE-INFO-SPEC contains information about how to communicate with a specific
(physical) ECU within a vehicle network and the concept of logical links;

• ECU-CONFIG describes all data elements for programming the configuration of an ECU (variant
coding). It contains the configuration of a control unit for a specific vehiclewith country-specific
settings and optional functions;

• COMPARAM-SPEC defines a specific protocol stack consisting of communication parameters
sets. These sets are tracked in the sub-package COMPARAM-SUBSET. The value of
communication parameters may be changed in context of a layer, or a specific diagnostic
service. This part of the model can also contain OEM specific parameters;

• COMPARAM-SUBSET specifies communication parameters, e.g. timings for physical layer,
transport layer and diagnostic protocol;

• DIAG-LAYER-CONTAINER keeps one or many of DIAG-LAYER structures, i.e. logical layers for
the description of diagnostic services with all necessary data and additional process-specific
information;

• FLASH sub-package is used to describe all information needed for ECU programming like
memory layout, logical structure of memory fragments and information (references) about the
diagnostic services or jobs used to (re-)program the memory;

• FUNCTION-DICTIONARY describes functions for concurrent execution on several ECUs and
covers the use case of function-oriented diagnostics;

• MULTIPLE-ECU-JOB-SPEC is designed to hold the definition of diagnostic jobs for
function-oriented diagnostics with many ECUs;

A Milestone for sustainable Remote Vehicle Capabilities 24

Norms & Standards in Automotive Industry

Figure 2.5: ODX data model overview
[Werner and Ralf, 2014, Supke andWerner, 2011a]. This provides an easier

understanding of the UML model of ODX described in [ISO, 2008b].

2.3.3 Diagnostic layers inheritance

Value inheritance is a core concept of ODX. It makes the inheritance concept of object-oriented
technology usable for diagnostic data modeling. The benefits of this inheritance are
[ISO, 2008b]:

• reuse of diagnostic data for more than one ECU or ECU-variant based on a single source
principle;

• reduce the amount of data by specifying additions to and differences between ECU projects,
rather than repeating data used in more than one ECU project;

• provide data security and integrity;
• avoid error-prone copies of identical data between ECU projects.

This inheritance relationship is defined between the classes PROTOCOL, FUNCTIONAL-GROUP,
BASE-VARIANT, ECU-VARIANT and ECU-SHARED-DATA which are called diagnostic layers
(DIAG-LAYER). A diagnostic layer of a specific type can inherit only a specific set of other types of
diagnostic layers, e.g. a diagnostic layer cannot inherit another diagnostic layer of the same type. In
this way, an inheritance hierarchy is established between the diagnostic layer classes (Figure 2.6).

Figure 2.6: Diagnostic layer hierarchy [ISO, 2008b, Werner and Ralf, 2014].

A Milestone for sustainable Remote Vehicle Capabilities 25

Norms & Standards in Automotive Industry

2.3.4 ODX file types

Several ODX files and files in other formats (documents, pictures, etc.) can be packaged into a
Packaged ODX data (PDX) file for easy transportation between OEMs and suppliers, and to reduce
the file size by ZIP-archiving. The content of the PDX package is described in a PDX package catalog.
This catalog is a separate XML file containing no ODX data itself. It is rather used as a repository
for meta-data in the exchange process. The file of the PDX package catalog shall always be named
“index.xml” in small letters, and located in the root directory of the PDX package’s internal file system
hierarchy. A PDX package is a self-contained file, i.e. its catalog references only files within the same
PDX package. Consequently, no reference to external files from another PDX package is allowed in
the PDX package catalog [ISO, 2008b].

A PDX package can handle different types of ODX-files with the following extensions, which
correspond to each sub-components of the ODX structure mentioned above:

• odx-c, odx-cs for COMPARAM-SPEC and COMPARAM-SUBSET respectively;

• odx-d for DIAG-LAYER-CONTAINER;

• odx-e for ECU-CONFIG;

• odx-f for FLASH;

• odx-fd for FUNCTION-DICTIONARY;

• odx-m for MULTIPLE-ECU-JOB-SPEC;

• odx-v for VEHICLE-INFORMATION-SPEC;

• odx: that is the easiest alternativewhere all the files containing ODX data can use the extension
odx, which is less restrictive.

2.3.5 ODX Catalog

An overview of the PDX catalog is illustrated on Figure 2.7. Its file entries can be grouped logically
within an ABLOCK element. Each ABLOCK may contain any number of FILE sub-elements, each
representing a single file in the PDX package. The ABLOCK element has a mandatory UPD attribute
which describes the update status of its own files within the data exchange process. The UPD
attribute can have one of the following values:

• NEW: new files have been introduced;

• CHANGED: the files have been changed;

• UNCHANGED: the files have not been changed;

• UNUSED: the files are no longer used at the moment but may be used again in the future;

• REUSED: the files that have been marked as UNUSED in an earlier stage of the data exchange
process are used again;

• DELETED: the files have been deleted;

• UNDEFINED: no update status available: this is the default value.

Information about the companies that have edited the ODX object is stored in an instance of
COMPANY-DATA class. This class is placed in ODX objects that are used as data exchange units and
could be eventually transferred to other third-parties.

A Milestone for sustainable Remote Vehicle Capabilities 26

Norms & Standards in Automotive Industry

Figure 2.7: Structure overview of the PDX catalog [ISO, 2008b].

2.3.6 Special Data Group (SDG)

SDG is the standard extension mechanism of ODX, and is used to store any kind of data that is
not covered by the standardized part of the data model in a structured way. The ODX specification
defines the structure of the SDG, but not its content. A standard diagnostic tool conforming to ODX
is therefore not required to process SDGs.

2.3.7 Administrative data

During their lifetime, some ODX instances like diagnostic layers or services may be subject to many
changes. These changes might be performed by different people from different companies. The
change history of such an object should then be tracked. Therefore, some information about the
person who made the change should be available1, to be able to address questions and feedback to
the right reference person. This type of data is called administrative data (ADMIN-DATA). It might
also include data such as company-specific data and revision informationwhich could be required to
handle the ODX object with a content management system [ISO, 2008b].

2.3.8 Audience class

Audience designates the target third-party for some diagnostic object classes such as
MULTIPLE-ECU-JOB, DATABLOCK of ECU-MEM or CONFIG-ITEM of ECU-CONFIG amongst others.
The five possible groups are IS-SUPPLIER, IS-DEVELOPMENT, IS-MANUFACTURING, IS-AFTERSALES
and IS-AFTERMARKET, where their values are set by a boolean value. It is also possible to
extend the list of enabled or disabled groups within a specific diagnostic layer class by using the
ADDITIONAL-AUDIENCE tag. This tag encloses an individual list of target users allowed to access to
the corresponding diagnostic class data [ISO, 2008b].

To leave its own proprietary format to embrace the change of a standard isn’t always an
easy task for vehicle manufacturers. But, this ODX standard has plenty conveniences discussed
next.

2.4 Advantages of ODX format

The ODX format offers benefits to each third-party of the ECU’s life cycle. Some examples are below
[ISO, 2008b, Supke andWerner, 2011a].

1Under the respect of the General Data Protection Regulation (GDPR) in full force and effect since May 25th, 2018 in
all countries of the European Union, which is available at [EU, 2016].

A Milestone for sustainable Remote Vehicle Capabilities 27

Norms & Standards in Automotive Industry

2.4.1 ECU system suppliers

They are able to exploit the following benefits:
• automatic configuration of ECU diagnostic data stream and communication protocol;
• automatic generation of documentation from XML data format (the ECU diagnostic content is
the documentation);

• automatic configuration of testers used during the ECUs’ development to verify their diagnostic
behavior;

• machine readable data format, namely XML which provides information to import into
suppliers’ own diagnostic database;

• generation of source code to configure diagnostic kernel software components.

2.4.2 Engineering at vehicle manufacturer

The following benefits are applicable to the vehicle manufacturer engineering:
• reduction of effort by authoring diagnostic data stream;
• “single source” principle allows various development testers to be supported;
• one single file format for import from and export to the diagnostic database.

2.4.3 Production at vehicle manufacturer

The benefits to the vehicle manufacturer production are:
• reduction of effort during diagnostic data verification, because verification needs to be
performed only once;

• reuse of verified diagnostic data;
• fewer errors because of fewer manual process steps;
• end-of-line tester uses the same diagnostic data and testers as in engineering.

2.4.4 Vehicle manufacturer service department and dealerships

They are:
• more convenient reuse of verified diagnostic data;
• less cost and effort to distribute diagnostic data;
• “pull” of diagnostic data via Intranet/Internet (e.g. from a portal into a D-Server) versus “push”
of updates via sending CD-ROMs;

• one single file format for various diagnostic service systems.

2.4.5 Test equipment manufacturers

We have:
• less effort needed to implement high quality scan tool software by using a generic data driven
approach;

• focus on “rich diagnostic application(s)” versus bits & bytes;
• more convenient reuse of vehicle manufacturer verified diagnostic data.

2.4.6 Franchise and aftermarket dealerships

For this group of users, we can cite:
• more convenient reuse of vehicle manufacturer verified diagnostic data;
• tester configuration by downloading data instead of modifying software;
• download on demand of diagnostic data versus buying tester software update upfront.

A Milestone for sustainable Remote Vehicle Capabilities 28

Norms & Standards in Automotive Industry

2.4.7 Legal authorities

They have following advantages:

• standardized description format for enhanced diagnostic data documentation (e.g. DTCs,
Parameter IDentifications (PIDs));

• road-side scan, inspection and maintenance tools can be vehicle manufacturer-independent;

• requirement of making enhanced diagnostic data available to independent aftermarket is
fulfilled.

The ISO 22901-1 defines how diagnostic and flash data are exchanged and maintained between
the various OEMs and it vehicles manufacturers, without skimping on topics like process ownership,
data sovereignty, data integration and naming conventions [Thym, 2007]. It also enables an external
independent tester device to communicate with vehicle’s control units since it is technology and
programming language-independent. It also allows to interpret the diagnostic data contained
in messages exchanged between the external test equipment and the ECUs. To keep the
communication as fluent as possible and hardware-independent between entities, ASAM also
standardizes the tool that enables to retrieve information from these ECU specification files and some
APIs, which are the main focus of the following section.

2.5 Standard communication between the ODX life cycle’s
third-parties

Test and diagnostic applications use the MVCI module to retrieve relevant diagnostic data from
ODX and to communicate with individual ECU within a vehicle network. The Figure 2.8 shows how
this communication between modules takes place through standardized APIs discussed in the next
subsections.

Figure 2.8: Architecture of a MVCI compliant D-Server [ISO, 2008b, ISO, 2009].

2.5.1 ISO 22900-2: D-PDU API

The MVCI module is the key component to exchange diagnostic data among OEMs and tool suppliers
without re-engineering already implemented software. By relying on the D-PDU API, an application
could access to one or many MVCI module implementations from various vendors. Applications
compliant to theMVCI standard are also basically independent of the underlying device as long as the
required physical interface supports the D-PDU API and no tool supplier specific feature is required

A Milestone for sustainable Remote Vehicle Capabilities 29

Norms & Standards in Automotive Industry

[ISO, 2009]. Diagnostic requests are transmitted to the MVCI through the D-PDU API. The MVCI
protocol module takes then the request as a Diagnostic PDU and transmits it to the vehicle’s ECUs
according to the vehicle communication protocol. Header type, check-sum information, and D-PDU
segmentation depend on the vehicle communication protocol, and shall be handled transparently
by the MVCI protocol module. Moreover, the MVCI protocol module observes the timing between
message frames, requests and responses on the physical interfaces. After completion, the MVCI
protocol module delivers the response back to the sender application or report an error [ISO, 2009].
From the D-PDU API perspective, it does not make a difference whether an application accesses the
software interface directly (Figure 2.9b), or through a MVCI D-Server (Figure 2.9a).

(a) (b)

Figure 2.9: Possible MVCI protocol module configurations [ISO, 2009].

To declare the capabilities of a D-PDU API implementation, a MVCI protocol module
vendor should provide a Module Description File (MDF) in XML. It should contain all information
about supported MVCI protocol module types, bus types, protocols, and communication links,
as well as all related information regarding parameters and I/O controls [ISO, 2009]. The
D-PDU API implementation should support, at a minimum, single clients and asynchronous,
multi-thread operations. For every communication link, the implementation should take care
of queuing communication requests. The D-PDU API implementation should also cover full
duplex and event-driven communication, enabling coverage of advanced vehicle communication
principles (e.g. response on event, periodic transmission, etc). D-PDU API functions should be
protocol-independent, i.e. flexible and generic enough to easily cover additional protocols, since
protocol standards have changed and new oneswill be released. To provide the capability to use any
protocol and any of its tool supplier specific implementations, all protocol-related information has
to be documented in a standardized and generic manner, namely in the MDF provided by themodule
supplier [ISO, 2009].

2.5.2 ISO 22900-3: D-Server API

The MVCI D-Server is accessible through the D-Server API. By using this API, applications are able
to browse the available features for each ECU and initiate a request towards an ECU using simple
symbolic expressions or short-names. If the request requires input parameters, they can be specified
using symbolic expressions as well. The D-Server takes the symbolic request with its possible input

A Milestone for sustainable Remote Vehicle Capabilities 30

Norms & Standards in Automotive Industry

parameters, and converts them into a diagnostic request message as defined at the protocol level.
The diagnostic request message represents the diagnostic PDU to forward to the MVCI protocol
module through the D-PDU API. Backwards, the D-Server converts diagnostic response messages
as retrieved from the MVCI protocol module back to symbolic information and provides it to the
application. A use case of these both ways conversions is described in details in the next section.
To perform these conversions, the D-Server may use its own internal specific runtime data format
to retrieve necessary information from the runtime database as illustrated in the Figure 2.8. This
runtime data can be imported from ODX files using a proprietary format converter. The database
contains the structure of every diagnostic request and response as supported by ECUs. It defines
byte and bit positions, width, and type of every input and output parameter. This information is
the basis for the conversion of requests and responses mentioned above. Even though the D-Server
obtains information from a runtime database, the runtime database and format are not specified
by the MVCI standard. Instead, it specifies an exchange format, namely the ODX format, to import
and export the ECU description across OEMs and tool suppliers [ISO, 2009]. The runtime format
implementation is consequently left up to system designers.

2.5.3 D-Server

Applications used today to diagnose modern vehicles have an arduous task. They need to keep
up with fast-paced changes, complex systems and variants management. In the automotive
market, there are different vehicle communication interfaces for different vehicle OEMs supporting
multiple communication protocols, e.g. UDS, KeyWord Protocol 2000 (KWP 2000) or Higher layer
communication protocol (J1939)2. The implementation of the D-Server concept supports overall
cost reduction to the end user. This norm supports many vehicle communication interfaces and a
protocol-independent D-PDU API as specified in [ISO, 2009] and briefly discussed previously. The
end user doesn’t require then to implement test and diagnostic applications for each protocol and
for each VCI. He only needs rather to communicate with the D-Server in a normalized way, namely
through the D-Server API mentioned in Section 2.5.2, which encapsulates all the complexity intrinsic
within cars’ bus diagnostic communication. The D-Server is required however to be configured with
vehicle- and ECU-specific information. This is accomplished by supporting the ODX data format
normalized in [ISO, 2008b] as shown in the Figure 2.10. An ODX-compliant diagnostics stack of
an ECU does not just allow to carry out basic diagnostics functions. But it makes also other functions
available via the diagnostic system such as reading specific ECU-internal signals, reprogramming of
the ECU, enabling or disabling of specific ECU’ features (variant coding) or identifying the current ECU
variant.

Figure 2.10: Architecture of ASAM-based diagnostic applications [Supke, 2011a].

2Communication Protocols are very well discussed in details in [Werner and Ralf, 2014].

A Milestone for sustainable Remote Vehicle Capabilities 31

Norms & Standards in Automotive Industry

One use case example of the D-Server

Apart from describing diagnostic communication parameters between ECUs and external devices,
data in ODX-files also allows the translation of diagnostic information contained in messages from
data-link and physical layers3 to human-readable values or text. A concrete example followswherein
a diagnostic application uses this MCD system. In the Figure 2.11, the simple case to retrieve the
engine Oil Level is illustrated, starting from step 1 to the 4th. It starts with the question asked at
the application level, for example: “What is the current engine Oil Level?”. For this purpose, the
application calls a function via the D-Server API at level MCD-3 D, with which this inquiry is made to
the test system. The test system now knows that it must send a bus message to the control unit in
the vehicle. But it still does not knowwhich one. For this reason, the ODX database will be queried
to get the bus message (the PDU request) for reading the Oil Level. This bus message is described in
the database and is returned to the runtime system. The runtime system in turn, passes it on to the
bus interface via the D-PDU API. The message is then sent from the bus interface to the ECU via the
bus system as a diagnostic request. The control unit responds with a corresponding response, which
in turn is received by the VCI, unpacked via the D-PDU API layer and processed as a reply message.
Typically, the Oil Level is returned as a controller-specific (hexadecimal) encoded value. The user
would like to see the Oil Level in mm (or something alike). It must therefore be decoded. How this
decoding takes place, how the controller-specific (hexadecimal) encoded values are decoded into the
physical value is specified again in the diagnostic database. Hence, the received response message
is decoded into a user-friendly value (or text) with help of the database, and ultimately sent up to the
diagnostic application via the MCD-3 layer. The diagnostic kernel is also capable of resolving ECU
variants and thus allowing the implementation of applications valid for multiple variants. Employing
a diagnostic kernel is a key aspect of establishing an ODX-based diagnostic process chain as such a
kernel guarantees uniform interpretation of ODX data.

Figure 2.11: Standardized runtime diagnostic process [Supke andWerner, 2011b].

3Among of the seven layers of the OSI basic reference model (ISO/IEC 7498-1), only three were implemented in
vehicles’ ECUs network. More in [ISO, 2013a, Werner and Ralf, 2014, Supke, 2011c].

A Milestone for sustainable Remote Vehicle Capabilities 32

Norms & Standards in Automotive Industry

D-Server’s architecture

Within the D-Server, the Figure 2.12 shows in details the different parts that are working together
to achieve a fluent communication between diagnostic applications and the hardware. It consists in
characteristic sub-tasks briefly described as follows [ISO, 2012a]:

• the Communication Processor generates and analyzes request and response telegrams to and
from ECUs. It handles all protocol-specific tasks like timings, creation of protocol headers
and check-sums, etc. and shall be parametrized via communication parameters from the ODX
database. It is the only interface to the ECU.

• the Data Processor supplies parameters and results on a physical level by providing all
necessary information from the database. Additionally, it converts ECU answers from
hexadecimal representation into a physical or any text representation and vice versa. This
Processor is the only interface to the ODX database and offers an ODX library to the Job
Processor. Therefore, it also handles Jobs, since they are stored in the ODX database.

• the role of the Flash Data Processor is to load programs and data in ECUs which are part of
the database. It provides all information about physical/logical data-/code-layout and possible
combinations of data and code segments and more. It is the only interface to the flash data
and offers a flash library to the Job Processor.

• as for the Job Processor, it executes service sequences and only uses objects from the D-Server
API. It provides several libraries for standardized access to the Communication Processor, Data
Processor, Flash Data Processor and to the Job Processor itself. The Job Processor uses the
same objects to interact with the different Processors to insure consistency between the
D-Server API and itself. As just mentioned, it gets its code to be executed from the Data
Processor which read it from the ODX database.

Figure 2.12: Architecture of a Diagnostic Server [ISO, 2012a].

The standards J2534-1 and RP1210a from the SAE are the predecessors of the D-PDU API.
Since applications based on these standards have already been introduced to the market, a MVCI
protocol module should embed a compatibility wrapper to support these standards.

The use of ASAM standards has many relevant advantages. First, international norms enable
various tool suppliers to provide compatible products to awider range of customers, which increases
suppliers’ income. Then, OEMs have possibilities to switch between suppliers, that promotes
competition leading to practical and profitable solutions. The development is also market-driven
providing improved maturity and stability of OEMs. Moreover, investments are protected due to the

A Milestone for sustainable Remote Vehicle Capabilities 33

Norms & Standards in Automotive Industry

fact that standards stabilize and calm developments. Not the least, international norms enable close
and tight cooperation between suppliers and OEMs parties, no additional effort on diagnostic side is
necessary [Supke andWerner, 2011a].

The standardized diagnostic runtime system as well as the ISO 22901-1 norm, even the Open
Test sequence eXchange (OTX)4 format are nowacceptedworldwide as the state of the art. However,
its implementation by vehicle manufacturers is different: in Germany it is already completed, but it
is still running in Asia. In other european countries, ODX data are imported into existing systems as a
first step. In North America, individual OEMs are very active [Ziegel, 2015]. As their implementation
is left to the manufacturer’s free will in terms of the technology to use and the physical architecture
to deploy, the next chapter presents the work done at some of the biggest automotive companies in
the world.

2.6 Current implementations

As mentioned in Section 2.5.2, to convert every symbolic request to diagnostic request messages,
and the reverse way for responses, the D-Server could use its own internal specific data format to
retrieve required information from the runtime data. This data can be imported from ODX files using
a specific format converter, as illustrated in the Figure 2.8. The converter extracts all diagnostic data
required by the respective D-Server for each ECU and provide it in a proprietary format. Although the
D-Server obtains its information from a runtime data source, the runtime data format is not specified
by the MVCI standard. It is consequently left up to the designers [ISO, 2009].

2.6.1 Advantages of the runtime data format

The reasons claimed to use this (encrypted) binary runtime format are [Volkswagen, 2017]:

• flexibility: all major ODX files standards are converted into a runtime binary format. The
D-Server can therefore be implemented independently of the ODX version;

• performance at runtime: the runtime binary format allows high-performance access to
converted data, which makes possible a much faster execution of the D-Server. The extraction
of diagnostic data is hence very much improved;

• size of (distributed) data: during the conversion of ODX files into the binary format, not only
encryption occurs. Redundancy can also be avoided, resulting in a substantial reduction in the
data volume in the runtime system. This means a high gain in time during the data distribution
among runtime systems;

• data consistency: during the conversion, various checks of the ODX input data are performed.
Any error in data can thus be detected at an early stage and does not appear at runtime;

• runtime data modularization: the resulting binary files are divided into different ODX
elements. This allows ODX projects to be compiled flexibly and individually from a complete
data pool, wherein only the import and inheritance relationships have to be taken into account.
The D-Server checks these relationships during start-up and reports corresponding errors at an
early stage.

Another important convenience of this runtime format is the protection of OEMs’ know-how and
against unauthorized changes. In fact, due to the architecture shown in the Figure 2.10, without the
use of the runtime format, every diagnostic and tester device would be required to carry also ODX
description files grouped together by vehicle projects. Since they are on client diagnostic devices,
such protective measures cannot therefore be considered to be superfluous.

4OTX, normalized in ISO 13209, is a test diagnostic hardware-independent, XML-based domain-specific language at a
high abstraction level to describe graphically (complex) test sequences for off-board vehicle diagnostics such as start-up
routines of ECUs, read-out the fault memory, flash programming, etc. More details in [ISO, 2011b, ISO, 2012b, ISO, 2012c,
Supke, 2011b].

A Milestone for sustainable Remote Vehicle Capabilities 34

Norms & Standards in Automotive Industry

2.6.2 Some implementations

Daten- und Systemtechnik GmbH (DSGmbH) is one of the companies offering their services to
implement many of ASAM norms [DSGmbH, 2017]. For instance, this company has implemented
this architecture for the biggest vehicle manufacturer in Europe, namely Volkswagen Group
[Volkswagen, 2017]. At Daimler, Softing AG is the provider selected by Daimler Group to move
from its proprietary format, to embrace the ODX and to implement the ASAM MCD-3 norm. They
also exploited all the advantages discussed in Section 2.4 and go even further by using a password
protection for diagnostic runtime data [Softing, 2011]. The engineers at Daimler Group used also
a standalone software to run their test and diagnostic sequences, for measuring values, flash
programming and on-board analysis of control units. Vehicle diagnostic data at the BMW Group is
available via its OnLine Service System (OSS) in collaboration with the provider Automotive Process
Institute GmbH [API, 2017].

The needs nowadays require another approach to use the D-Server, even a new architecture.
Although [Subke, 2008] proposed a way to perform parallel diagnostic communication with more
than one vehicle through an access point andmanyWi-Fi-enabled VCIs, such solutions allow to cover
at the most tens of vehicles simultaneously. Besides, they have to be in the same area covered by
the access point and the communication must be synchronous. In cases where manufacturers want
to reach thousands or millions of its vehicles for diagnosis, local computer thick client software is
not suitable anymore. Another limitation is the singleton instance of project within a D-Server, i.e.
one instance of the D-Server can load only one vehicle project at runtime. Therefore, this instance
can retrieve data within this loaded project. In case of parallel communication with vehicles from
different projects, it is required to have as many instances of the D-Server as projects involved.
Consequently, this leads to a very bad performance in parallel vehicle diagnostic. In Chapter 7, we
discuss how to overcome this challenge and even more other use cases that could be fulfilled with a
remote access to a Dictionary Server instance.

2.7 Summary of the chapter

In this chapter we discussed norms and standards in the automotive industry related to vehicle
communication. These norms cover the life cycle of a vehicle project, the data model and
communication between third-parties. We also presented current implementations of these norms
and standards. In the next chapter, we present fundamentals about the microservice architecture,
its principles and communications mechanisms since they are the basis of our design.

A Milestone for sustainable Remote Vehicle Capabilities 35

Chapter 3

Microservice-Oriented Architecture

The object of education is not to fill a man’s
mind with facts; it is to teach him how to

use his mind in thinking.

– Henry Ford

Mobility, in a general sense, is a matter of concern for vehicle manufacturers to face the
competition, because customers are seduced more by services than the product itself. Car
manufacturers should take these requirements more into account and not focus exclusively on
product optimization. Some experts even predict that the automotive market will be dominated
more by services than by simple cars [Wimmer, 2016]. Therefore, existing business models are
no longer competitive. Most car manufacturers are already feeling the change and consequently
have launched new business models – from electric motors through car-sharing offers to mobility
services. On the other hand, in times of increasing environmental pollution and densely populated
cities, theyhave to focus on efficient, convenient and comprehensivemobility services [Russo, 2016].
This has significant repercussions in capabilities and functionalities of a vehicle in terms of
connectivity. [Neumann et al., 2017] even stated that Ethernetwill be an integral part of the internal
communication system of control units. The concept of the Internet of Things (IoT) takes thus all its
full meaning and has applications in the automotive industry. The Industry 4.0 standard and IoT
are expected to revolutionize the industrial world. The number of interconnected devices offers a
great opportunity to gather valuable data for advanced decision-making at a management level, to
improve the through-life of a product [Mehnen et al., 2017].

Changes are also noticeable in IT, specifically in software engineering. The latter has to adapt
very quickly to face upwith the increasing needs of users. In this vein, the service-oriented design has
emerged which is very adapted to the IoT mentioned above. Systems and particularly IoT-systems
should be designed right from the start with the option to integrate themwith other systems at any
time in a well-controlled and comparatively easy and smooth way. Industry 4.0 technology uses the
IoT to facilitate the concept of Cyber-Physical Systems (CPS) that offers new business opportunities
through the Internet of Services [Mehnen et al., 2017]. The concept of Servitization discussed in
[Raddats et al., 2016, Huxtable and Schaefer, 2016] suggests another business approach where the
conventional sale of a product is completed by services to customers while the product itself often
remains the property of the manufacturer. This approach poses new challenges to manufacturers
due to the availability of associated new contract schemes which contain through-life service
tasks. These tasks cover the whole product life-cycle from its design and manufacture, over its
repair or maintenance to its final recycle or end-of-life. In such a scenario, the IoT can help in
various aspects. Real-time data can be gathered for example for product- and process-monitoring
purposes. Large amounts of data can be gathered together and be exploited at a higher level,
for example to support strategic maintenance decisions by using the concepts of Data Analytics
[Pääkkönen and Pakkala, 2015]. IoT can also help to convert analytical decisions made in a remote

A Milestone for sustainable Remote Vehicle Capabilities 36

Microservice-Oriented Architecture

server into automated actions that influence processes and product usage actively as illustrated in
the Figure 3.1 [Mehnen et al., 2017].

Figure 3.1: IoT stack architecture [Mehnen et al., 2017]. Data is collected from sensors
and actuators, analyzed in Cloud Services and commands are send back to Things.

For a better understanding of these changes in software engineering, it is important to discuss
the inherent terms in these concepts first. Then, we will have a look at how software architecture
should be designed with this service-oriented approach in mind.

3.1 Cloud Microservices

3.1.1 Definitions

In software engineering, the ISO defines the architecture as a set of fundamental concepts or
properties of a system in its environment embodied in its elements, relationships, and in the
principles of its design and evolution [ISO, 2011c]. In the context of Service-Oriented Architecture
(SOA), the term service refers to a software functionality or a set of functionalities with the intent
that different clients can reuse them for different purposes, together with procedures that regulate
its use. According to [Evans, 2003], itmust also be stateless, i.e. any client can use anyof its instances
without regard to the instance’s individual history. Organization for the Advancement of Structured
Information Standards (OASIS) characterizes a service as a mechanism to enable access to one or
more capabilities, where the access is based on the terms of a contract. The contract describes an
interface with constraints and policies as specified by the service description [OASIS, 2012]. The
constraints could be the authentication of the client requesting the service, the encryption function
for data exchange, just to mention a few. [Dragoni et al., 2017] defines amicroservice as a cohesive,
conceptually independent process interacting via messages. [Newman, 2015] states that it should
be also autonomous and [Richards, 2015] describes it as a single-purpose component that do one
task really, really well. [Daya et al., 2015] goes even further by recommending that it should have
a certain level of language neutrality, its own source code management repository and its own
delivery policies. Then, we can agree that a microservice is a stateless single-purpose-service
component, independent and autonomous, with a higher internal cohesion performing its task
extremely well. Microservices are derived from the SOA architectural style that make an application
up of a set of loosely coupled services that have bounded contexts. The various types of coupling
in service design are very well explained in [Erl, 2008]. Microservices should be deployed in
isolation and equipped with dedicated memory persistence tools [Dragoni et al., 2017]. In a
Microservice-Oriented Architecture (MOA), services should be fine-grained and the communication
protocols should be lightweight. Such an architecture improves modularity and makes the

A Milestone for sustainable Remote Vehicle Capabilities 37

Microservice-Oriented Architecture

application easier to understand, develop, maintain, test and eventually extend its functionalities.
It speeds up the development by parallelizing tasks in small autonomous teams to develop, deploy
and scale their respective services independently. It allows continuous delivery and deployment
[Dragoni et al., 2017, Newman, 2015, Richardson, 2018, Daya et al., 2015]. Microservices-based
architectures also enables the evolution of individual service’s architecture by continuous refactoring
[Chen and Babar, 2014]. A confusion could be made prima facie between the MOA and the SOA
architectural styles of software design. There are some similarities between both at a very high-level.
But a deeper insight brings out significant divergences.

3.1.2 MOA vs. SOA

To illustrate the differences between these approaches, [Richardson, 2018] based his definition of
a microservice on scale cube [Abbott and Fisher, 2015]. The model describes three dimensions for
scaling an application. The X-axis scaling is one common way to scale an application (Figure 3.2a).
It consists in running multiple instances of the same application behind a load balancer and all
instances have the same responsibilities. The Z-axis scaling also runs multiple instances of the
application. But, unlike X-axis scaling, each instance is responsible for only a subset of the request
(Figure 3.2b). To redirect the corresponding subset to the appropriate instance, the balancermay use
an attribute of the request. Although the two previous scaling axes improve the application’s capacity
and availability, none of them tackles the problem of increasing development effort and application
complexity. Therefore, to split a monolithic application into a set of services, the Y-axis scaling, also
called functional decomposition, is used. This scaling method can be a combination of the first two
ones. For example, to respond to a request, a balancer could run multiple one-responsibility-based
applications (Z-axis scaling) and route the request subsets accordingly (Figure 3.2c). Then, these
applications are load-balanced individually and independently from each other (X-axis scaling). Each
one-responsibility-based application is then called a microservice, and the Y-axis scaling helps to
fully achieve the MOA.

(a) (b)

(c)

Figure 3.2: The three axes for application scaling [Richardson, 2018].
Microservice-based applications are scaled on the Y-axis.

A Milestone for sustainable Remote Vehicle Capabilities 38

Microservice-Oriented Architecture

SOA applications commonly use heavyweight standards like Simple Object Access Protocol
(SOAP) and other Web Services standards [Erl, 2008]. An Enterprise Service Bus (ESB) is also used
often as a communication system between the services. Applications designed by the microservice
architectural style aim to use conversely lightweight technologies such as a Representational
State Transfer (ReST) or message-based protocols. The services communicate directly without
using a mediator like an ESB. MOA deviates from SOA also on how they share components. The
former is built on the concept of share-as-little-as-possible, while the latter uses the concept of a
share-as-much-as-possible architecture style [Richards, 2015]. One concrete example is the pattern
of their respective data-tier. SOA typically have a global persistence model and share databases in
the whole application (Figure 3.3). On the other hand, a main characteristic of the MOA is a set of
loosely coupled services. One step to fulfill this criteria is by leaving each service with its own data
source as shown in the Figure 3.4. Each service should have its own data store and even more, is
usually considered to have its own domainmodel. However, it is not excluded that microservices can
share static data [Newman, 2015].

Figure 3.3: Persistence tier in SOA.

Figure 3.4: Persistence mechanism in MOA.

Another difference between these two styles is the size of the services. SOA-based
applications are typically an integration of large, complex monolithic instances, since SOA promotes
coarse-grained services [McGovern et al., 2003]. Even though services in the MOA are not always
“micro”-sized, they are almost always much smaller. A SOA-based application will be consequently
made up of a few large services while a MOA will consist of many more smaller services
[Richardson, 2018].

A Milestone for sustainable Remote Vehicle Capabilities 39

Microservice-Oriented Architecture

Besides the communication protocols, collaboration between services distinguish both these
architectural styles. In the literature, there are two collaboration models, namely the Orchestration
and Choreography [Newman, 2015, Richards, 2015]. The service orchestration is the coordination
of multiple services through a centralized mediator, just like many musicians of an orchestra playing
different instruments, but all coordinated through a central person – the conductor. In this case,
a service is responsible to find and send requests to all services involved a business process. The
downside of this approach is that there are few “god” services carrying the central business logic
and such systems tend to be highly coupled. With choreography on the other hand, each service
is notified of its job by the previous one, and they fulfill their role respectively, like dancers all
finding their way and working in conjunction with one another in a ballet. The execution here can be
synchronous, where a service calls another one, which may call another one and so on, performing
a so-called service chaining [Richards, 2015]. This variant of choreography is suitable for business
tasks which must be performed as a transaction or a set of micro-transactions. Another variant is
in an event-driven style. An initiator service fires an event, and all services required to complete
the business logic simply subscribe to it and react accordingly. This approach is significantly more
decoupled andmore flexible for changes. For instance, when another new service needs to be aware
of an event, it just has to subscribe to it and do its job when it is triggered. The downside is that a
clear overview of the businessworkflow does not belong to a god service anymore, but rather is now
implicit in the system [Newman, 2015]. The orchestration collaboration style is commonly found in
SOA-based systems, while the second one is best suitable for microservices architecture, although
the use of both styles within a system is quite possible [Richards, 2015].

As some distinctions between these two architectural design is made, we discuss about the
benefits of theMOA in Section 3.1.4. But before that, let us discuss about its design principles.

3.1.3 Microservice design principles

Notwithstanding the differences between the two architectural styles discussed in Section 3.1.2,
the MOA inherits some properties of the SOA. The non-exhaustive list is [Connolly and Begg, 2015,
Erl, 2005a, Erl, 2005b, Valipour et al., 2009, McGovern et al., 2003, Lankhorst, 2012]:

• reusability: rather than an immediate reuse of the functionality as a part of the application
that requires it, a microservice is designed to support potential reuse with this functionality
developed separately. That enables a better return on the investment to produce that
functionality, as it is likely to outlive the purpose what it was designed for;

• composability: a microservice-based application is an assembly of reusable microservices,
components and logic that connects them forpredefined purposes. In reference to the property
above, microservices do not strongly depend on the application they are built for, and can be
used in many applications. Moreover, designers and developers are more prone to reuse piece
of application than to build it from scratch. This property allows also the (business) logic to be
distributed at different levels of granularity and the definition of abstraction layers;

• loose coupling: a microservice’s degree of coupling reflects directly on its modifiability. The
more tightly coupled a microservice is to its consumers, the more a change in a it will
necessitate changes them. Loose coupling is enhanced through the use of microservice’s
contracts and discovery. Therefore, the consumers do have neither detailed information about
the microservice implementation nor its location before runtime: they depend only on the
microservice’s contract;

• to have a formal contract: in order for them to interact with each other, microservices do
not need to share anything more than a formal contract that defines the communications
agreements and any additional microservice’s description, which enhances the loose coupling
previously discussed;

• abstraction of the underlying logic: a microservice should expose only its formal contract
alongside with its description to the outside world. The underlying logic, the implementation

A Milestone for sustainable Remote Vehicle Capabilities 40

Microservice-Oriented Architecture

technology and other technical details are inaccessible and irrelevant to the consumers;

• autonomy: a microservice encapsulates its logic within an explicit boundary. This property
measures how a microservice is independent within this boundary from a design-time and a
runtime perspective, and can execute its logic without interacting with other microservices;

• statelessness: a microservice should not manage information to keep a state between
incoming requests, since that can weaken it ability to remain loosely coupled to other
microservices. A microservice should be designed to maximize its statelessness, and the
management of the eventual whole system’s state should be implemented elsewhere;

• discoverability: microservices should allow their descriptions to be discovered and understood
by consumers. In this way, the consumers are able to search and find what they are looking
for and use the microservice’ logic. If the microservice’s address is already known during
implementation, it can be hard-coded into the consumer’s code. But, the discoverability can
be improved by the use of a directory provider as described in the next property;

• to have a network-addressable interface: a microservice must support remote requests
from across a network. An application can assemble a set of reusable microservices on
different locations only if each of them has a network interface. This property also enables
the microservice to be location-independent. It may be possible to consume a microservice
through a local interface and not through a network, when the consumer and the microservice
are on the same location. But, this should be done only for performance reasons. Besides, the
microservice must also simultaneously support remote requests;

• to have a transparent location: microservices’ locations are stored in a registry. By thisway, the
clients do not have to access microservices using their absolute network address directly. They
rather dynamically discover the location of the microservice they are looking for by searching
in the registry. This allows the flexibility to move a microservice from one location to another
without affecting its clients. This allows also to move a microservice implementation from one
platform to another. Provided that its published contract does not change, no changes to the
clients should be required;

• to be self-healing: this characterizes the microservice ability to recover from errors without a
human intervention during runtime.

These properties have some others aspects that improve them. For instance, the interoperability
improves the service reusability. The interoperability of a system depicts the its ability to use
different platforms and languages for it sub-components and microservices to communicate with
each other. If it is hard for an entity to connect to a microservice an to use it frequently, it is
unlikely for the microservice to be reuse in the future [Valipour et al., 2009, McGovern et al., 2003,
Lankhorst, 2012]. There is also the microservice’s longevity that illustrates its ability to live beyond
its original purpose. When a microservice is long-lived designed, its reusability is improved. The
granularity depicts whether a microservice has an adequate size and scope. In order to be
reusable, the functionality implemented by the microservice must be relevant to the consumers
[Valipour et al., 2009, McGovern et al., 2003]. The reliability of a microservice, an aspect of the
self-healing, measures the ability to recover from failure. One way to improve this aspect is the
dynamic execution and binding of microservice instances. When a microservice fails, the consumers
might be dynamically reconnected with another running instance without they notice the switch.
However, this is possible only if they interactwith themicroservice only through its contract interface
[Valipour et al., 2009, McGovern et al., 2003, Lankhorst, 2012].

3.1.4 Advantages of the MOA

Since it is derived from the SOA style, the MOA also encapsulates advantages of SOA like
service reusability and service composability and interoperability [Erl, 2008, McGovern et al., 2003,
Lankhorst, 2012] just to mention a few. In addition, the microservice architectural design brings

A Milestone for sustainable Remote Vehicle Capabilities 41

Microservice-Oriented Architecture

many benefits itself. The first one is the small size of services. The source code is then easier
to understand by developers, even by those who have not participate to the project since the
beginning. Their productivity is increased, the services could be started much faster than a monolith
and deployments are speeding up. Secondly, due to bounded contexts of each services, they can
be deployed independently from each other. When a change is needed, it occurs only within the
development team responsible of the service, without interfering with others, even during tests and
deployments, as long as the service’s contract does not change.

Another convenience of this style is the independent scaling as explained in Section 3.1.2.
Furthermore, each service can be deployed in the best-suited-environment to its requirements. For
instance, a microservice-based application could use more than one type of DBMS as illustrated
in the Figure 3.4. This allows to take advantage of underlying technologies and achieve better
performance levels [Newman, 2015, Nadareishvili et al., 2016] due to an enhanced heterogeneous
interoperability [Richards, 2015]. The MOA also enhances fault isolation or the resilience of an
application. For example, a memory issue in one service is bounded only within that service. The
others can continue to handle requests as usual. When such a case happens in a monolith system,
where one component misbehaves, the entire application could be out of service.

Last but not least, microservices eliminate any long-term commitment to a technology stack.
Often, when developing a new service, the developers are free to choose the language and
frameworks where they are best at for that service. Of course, due to some internal constraints
in many organizations, it makes sense to restrict the choices but the point here is that they are not
constrained by past decisions anymore. Also, because the services are small, it is feasible to rewrite
themusing better platforms. And if the experiment of a newtechnology is not successful, developers
can cancel that work without risking the entire project. In contrast with a monolithic architecture,
initial technology decisions seriously constrain developers ability to use another languages and
frameworks in the future [Richardson, 2018]. Despite so many benefits, there are also some issues
when using microservices.

3.1.5 Drawbacks of MOA

No technology is a silver bullet, and the MOA is not an exception. One of the biggest challenges of
architects is to divide a monolith into services. Unfortunately, there is not a concrete, well-defined
algorithm for that. Like many tasks in software engineering, it is more art than science. Having
bad service boundaries can result to a distributed monolith, i.e. a set of high coupled services that
must be deployed together. Moreover, developers could be stuck in making lot of changes in the
collaboration system between services – an expensive procedure – rather than facing up to coming
functional changes [Newman, 2015, Richardson, 2018]. It is therefore recommended to take some
time to understand the system’s functionalities first and then try to identify modules boundaries as
clear as possible, prior to rush in decomposition into services.

Developers have to face the additional complexity of creating a distributed system. They must
design an inter-process communication mechanism. Most used development tools are designed
for building monolithic applications and are not very helpful for developing distributed systems. To
implement automated integration tests, i.e. those involving multiple services is challenging. There
is also the operational complexity to take into account. Many more instances of different types of
service must be handled in production. Fortunately, there are already tools with a high-level of
automation such as Platform as a Service (PaaS)-based technologies like Pivotal Cloud Foundry, or
one of the Docker orchestration platforms. Additionally, features that go across multiple services
requires a careful coordination between the various development teams not only during the test
phase, but especially when deploying in production [Richardson, 2018].

The MOA style has its limitations like any other technology, but there are palliative solutions to
them. The implementation of these solutions are mostly based on the context in which this style is
projected to be used. For example, the coordination between development teams depends strongly

A Milestone for sustainable Remote Vehicle Capabilities 42

Microservice-Oriented Architecture

on organization’s internal policies. In the next section, we discuss some best practices to address the
issue on how to split a business process into microservices.

3.2 How to detect Microservices boundaries

An architect should start by defining the system operations. The functional requirements are a
good point to begin with, where user stories and their corresponding scenarios are identified.
[Richardson, 2018] proposed to use a two step process to achieve this. The first step consists in
the design of the high-level domain model made up of the key classes based on user stories, while
the system operations and their respective behavior are described in the second step in terms of the
domainmodel. Each system operation behavior is defined by how itmanipulates domain objects and
the relationships between them. Then comes the decomposition into (micro)services. As discussed
in Section 3.1, a microservice should have a high internal cohesion and must be loosely coupled
to others. This is one of the most important purposes when a system has to be decomposed into
services. We discuss some guidelines in the following sections.

3.2.1 Domain Driven Design

The guideline commonly cited is the Domain-Driven Design (DDD) which has a set of principles
and one of them is the bounded context. A bounded context is a specific responsibility enforced
with explicit boundaries [Newman, 2015] with an explicit interface describing what models from
other contexts let through the boundary. [Evans, 2003] declared that any given domain consists of
multiple bounded contexts, each containing models that do not need to be shared with the outside
world as well as models that are shared externally with other bounded contexts. The DDD defines
domain models, each one with an explicit scope. [Evans, 2003] recommended the following steps
to “isolate” a context:

1. partition a complex program into layers which are the user interface, the application or
business, the domain and the infrastructure layers (Figure 3.5);

2. develop a design within each layer that is cohesive and that depends only on the layers below;

3. follow standard architectural patterns to provide loose coupling to the layers above; but when
an object of a lower level needs to communicate upward (such as answering a direct query),
another mechanism like callbacks or observers should be used.

Figure 3.5: Layered architecture of a domain [Evans, 2003].

The dependencies between layers are unidirectional, starting from the top to the bottom.
Interaction patterns are commonly used to implement this inter-layer communication. For instance,

A Milestone for sustainable Remote Vehicle Capabilities 43

Microservice-Oriented Architecture

there is the Model-View-Controller (MVC) pattern which is often used in applications with Graphical
User Interfaces (GUIs). There are many architectural frameworks that implement such patterns and
which are ready to use by developers. Nevertheless, they are rigid in most cases. Consequently,
developers are being forced to apply a not-flexible model, a one-size-fits-all solution. Frameworks
should be selected wisely to solve problems and applied judiciously to use only their most valuable
features. As recommendation, developers should move all the business logic into the user interface.
When the application is decomposed into small functions, they should be implemented separately
in corresponding interfaces which enclose business rules. The development of GUIs should also be
automated via graphic design tools [Evans, 2003]. To build effectively the layers mentioned above,
the DDD helps to identify artifacts. Some relevant ones are:

• entity: also called reference object, it is not defined by its attributes, but rather by a thread of
continuity and identity;

• value object: it contains attributes but has no conceptual identity. When it is shared, it must
be immutable;

• associations between objects: they should be constrained as much as possible to ease
the understanding, loose the coupling and streamline the design. This could be achieved
by enforcing a traversal direction, reducing the multiplicity (with qualifiers) and eliminating
unnecessary relationships;

• aggregate: which is a group of associated objects inside a boundary and handled as a unit with
a single specific root entity. The root is the only member of the aggregate accessible from
outside objects, even though objects within the boundary may hold references to each other.

• factory: which provides the necessary encapsulation when the creation of (domain) objects
or entire aggregates is complex or the assembly operations are not aligned with the
responsibilities of created objects. This abstraction allows that alternative implementations
of object creation can be interchanged without changing the factory interface;

• repository: in an application, the business logic needs references to domain objects, which can
be an entity, a value object or an aggregate. To query the persistence tier for such objects
may be very complex and is also against the DDD concept. The repository encapsulates the
technologyand the strategy tomanipulate domain objects in the data store according to criteria
beforehand. It may use the factory to instantiate such objects. For aggregates, it provides
reference only to root entities;

• domain event: it is a domain object that encapsulates an event in the domain and contains
relevant associated data. Such events are suitable to notify clients to maintain a certain
consistency level within the application;

• service: it is an operation that does not conceptually belong to any object, but rather is defined
in terms of what it offers to the outside world. It should be stateless;

• module: also called package, it is a partition of objects that have a similar conceptual meaning
and helps to overcome cognitive overload. Needless to say, it should be cohesive and loosely
coupled to other modules.

To identify bounded contexts, designers should not think in terms of data that is shared between
parties, but rather about the capabilities those contexts offer to their neighbors. These capabilities
may require data exchange models. That is why question like “What does this context do?”, and
then “What data does it need to do that?” should be answered early in the design. Then, these
capabilities become the key operations of services that will be exposed to others through their
respective interfaces. A model must be above all, internally consistent or unified, i.e. its terms must
always have the similar conceptual meaning such that each term is unambiguous, and it does not
include any contradictory rules; otherwise, it is worthless [Evans, 2003]. Designers must keep a
context strictly consistent within its bounds, and should not be disturbed or confused by issues from
outside.

A Milestone for sustainable Remote Vehicle Capabilities 44

Microservice-Oriented Architecture

3.2.2 Business capability-based decomposition

Another strategy to detect bounded contexts consists in identifying business capabilities. A business
capability is something unique, independent and collective that can be applied to generate an
added value [Richardson, 2018, Scott, 2014]. It defines the organization’s capacity to successfully
perform a unique stable business activity, although its internal execution (its business process)
may evolve over the time. Business capabilities may be identified by analyzing the organization’s
purpose, structure, business processes and areas of expertise. Each of them can be assimilated to a
business-oriented service rather than a technical service [Richardson, 2018]. Their specifications are
similar to those of service contracts, i.e. with rules that determine how they must be applied. Then,
[Scott, 2014] defines a capability model as a description of the complete set of capabilities required
within an organization to execute its inner business model or fulfill its mission.

Business capabilities may be decomposed into sub-capabilities. The hierarchical structure
between capabilitiesmight be deduced fromthat of the organization. For instance, the organization’s
groups could bemapped to business capabilities or groups of related business capabilities. However,
good capabilities have the following attributes [Scott, 2014]:

• uniqueness: a capability is a fundamental organization’s element and as such, is clearlydifferent
from other capabilities. It might be applied throughout the organization in different ways to
impact on different outcomes but it is still a single capability;

• stability: as one of their greatest interest, the set of business capabilities provides amuchmore
stable architectural overview of the organization than its own separate projects, processes,
applications, or even strategies do, since business capabilities captures what an organization
does. They are generally stable when they are well-defined beforehand and change onlywhen
there is a significant shift in the underlying business model or organization’s mission;

• abstraction: the capabilitymodel is a neutral design towards an organization,whichmeans that
modifications in the organizational structure do not necessary have an impact on the capability
model. However, in complex organizations, it is quite possible to find capabilities both common
to and unique to organizational units;

• map identity: every organization, no matter its size, applies a capability model to accomplish
its mission. Since capabilities represent the organization’s leader’s interest (at least at the top
level), each organization has a unique set of private or confidential capabilities. Therefore, each
organization has a unique capability map;

• cooperation-ready: capabilities represent what an organization can do and what can be
potentially done. Then, they can be applied in multiple ways and for different purposes.
Therefore, an individual standalone capability is irrelevant;

• hierarchical without inheritance: despite capabilities can often be decomposed into
sub-capabilities, the model does not implement the inheritance concept. A lower level
capability cannot inherit properties and behavior from a higher level one. For instance, as
mentioned above, a capability can be applied in many different manners. Moreover, the
capability model at the enterprise level represent the management board’s insight, and each
organization typically has its own privacypolicies. Consequently, lower level capabilities cannot
inherit from confidential capability model, but may from common capability model.

Once the capabilitymodel has been designed, a service could bematched to a capability or a group of
capabilities. This drives to cohesive and loosely coupled services and domain objects can be inferred.
Due to the stability property of business capabilities, the global architecture of services doesn’t
change as long as the organization’s mission lasts, and potential changes in business processes
have an impact only on implementation details. But, the capability is not outputs the final service
architecture, since other constraints should be taken into account to refine the model obtained so
far. For instance, the communication between services (see Section 3.3) is an important criteria,
as too fine decomposition may lead to an intensive domain objects exchange and therefore will be
inefficient.

A Milestone for sustainable Remote Vehicle Capabilities 45

Microservice-Oriented Architecture

3.2.3 Sub-domain-based decomposition

The DDD discussed in Section 3.2.1 proposed amethodology to identify (sub-)domains and bounded
contexts in an object-oriented design1. The traditional approach to design an enterprise model
consist in conceiving a singlemodel for the entire organization. This leads to coarse-grained business
entities, which are more complex and bigger than they should be to fit the needs of the enterprise’s
groups taken separately, i.e. a one-size-fit-all solution. Moreover, it is a tremendous work to
convince different groups to agree on a single model and eliminate ambiguities [Richardson, 2018].
On the opposite, the DDD has the focus on groups by defining multiple domain models, each one
with an clear scope. A sub-domain is therefore an expertise area with a precise mission enclosed
within specific bounds. Sub-domains could be detected the same way as with business capabilities
as discussed in Section 3.2.2 and the output is expected to be similar to the business capability
model. By focusing itself on sub-domain, this methodology also helps to prevent god classes
[Richardson, 2018].

3.2.4 Complementary decomposition principles

There are some other decomposition principles in the literature. [Martin, 1995] started with the
Single Responsibility Principle (SRP) which says: “a class should have only one reason to change.
Every responsibility is subjected to change.”. If a class encapsulates multiple responsibilities that
change independently from each other, then it will not be stable. Applying the SRP in MOA helps to
create small, cohesive, loosely coupled and single-responsibility-based services. Therefore, this will
output a concise and stable microservices architecture.

Then, there is the Common Closure Principle (CCP)which stipulates: “the classes in a package
should be closed together against the same kinds of changes. A change that affects a package
affects all the classes in that package.”. If two classes change because of a similar underlying
reason, then they belong to the same package. It is quite possible that these classes have different
implementations to execute a particular business rule. When that business rule changes, these
changes need to be propagated only in a small number of packages in the code – one package
in the best case. Because of the restricted bound to modify when a change comes, applying the
CCP enhances the cohesion within the package and improves considerably the maintainability of an
application. Using the CCPwhen designing amicroservice architecture leads to packages susceptible
to change for the same reason to belong to the same service. In this way, the number of services that
need to be modified, re-compiled, re-tested and re-deployedwhen a change occurs is minimized. In
the best case, it will only affect a single service.

Although microservices are bounded context and intended to be independent and
autonomous, they are part of a whole system. Therefore, they must interact with components that
are outside of their respective domain. Moreover, they are often integrated with legacy systems
which may have their own internal architecture, model and communication policies. Avoiding
integration with other legacy systems is not a solution, to impose an communication interface
neither. One way to solve this issue is the anti-corruption pattern [Evans, 2003]. This pattern
has the advantage that it maintains the integrity of the model of the internal system and avoid a
dependencywith the outside. It allows also to re-abstract the outsideworld, by providing its services
and information to the internal system consistently. However, this pattern must not be assimilated
to a mechanism for transferring messages between systems. It is rather a process consisting in
translation of conceptual data from one model to another.

All the guidelines to determinate microservices we just discussed in previous sections provide
an excellent start of a MOA. But, it is an iterative process and the basis obtained so far needs to be
honed. Thus, other requirements such as communication mechanisms come then into play.

1Although it might be an object-oriented design at the top-level, developers are free to use any type of programming
language in the detailed design.

A Milestone for sustainable Remote Vehicle Capabilities 46

Microservice-Oriented Architecture

3.3 Microservices Inter-communication

As discussed in Section 3.1.1, theMOA decomposes an application as a set of services. Those services
must collaborate to handle incoming requests. Since service instances are typically processes that
run on separate machines, they must interact using the Inter-Process Communication (IPC) model.
The first category is made up of synchronous request/response-based exchange mechanisms such
as HyperText Transfer Protocol (HTTP)-based ReST or google Remote Procedure Call (gRPC). There
are also asynchronous, message-based protocols such as Advanced Message Queuing Protocol
(AMQP), Message Queuing Telemetry Transport (MQTT) or Streaming Text Oriented Messaging
Protocol (STOMP). The message formats commonly used are either human readable, text-based, or
binary.

3.3.1 Communication styles

Regardless the implementation, the IPC model can be categorized into two groups:
1. one-to-one, where one service instance responds to only one client request;
2. one-to-many, where the response is made up of a combination of responses from many

different service instances.
Then, there is also the communication mode, which could be:
1. synchronous, where the request sender waits during a defined period of time and blocks until

it receives a response from the service, or,
2. asynchronous, wherein the sender doesn’t block while waiting for a response, which isn’t

necessarily sent immediately. The sender publishes a notification to the service, which might
not be consumed. Then, after subscribing to a channel, it listens for an eventual response.

Depending on the request to handle, a service or a set of services can use a wisely designed
combination of these communication mechanisms. Along these mechanisms, services must also
exchange data following a specific format. The message format has an impact on the performance
of the IPC implementation, the usability of the service and its evolvability. Although the use of some
IPCmechanisms such as gRPC forces themessage format, it is crucial to use a language-independent
message format [Richardson, 2018].

3.3.2 Message formats

The first category of message formats is text-based such as JavaScript Object Notation (JSON)
or XML. Aside these formats are human readable, they are also self describing. A JSON message
is a collection of name-value pairs and array data types. Likewise, the XML format, also
machine-readable, defines data in a collection of named elements with attributes and values, which
could be validated through a schema. The drawback of text-based message formats commonly
cited is their verbosity and complexity, especially with XML. Every message must carry the overhead
containing the names of the attributes in addition to their values. Moreover, the parsing of such
messages can be memory intensive.

The other type is binary such as Apache Avro, Apache Thrift or Protocol Buffers
[Kleppmann, 2017]. These formats provide a typed Interface Definition Language (IDL) to define
the structure of the message. A compiler then generates the code that serializes and de-serializes
it. However, Protocol Buffers uses tagged fields, while the schema is required by an Apache Avro
consumer to interpret message. Therefore, the service upgradability is easier with Protocol Buffers
thanwithAvro [Richardson, 2018]. On the other hand, Thrift ismuchmore a data serialization library.
It is also an entire RPC framework that can connect applications written in a variety of languages. To
create a Thrift-based communication channel, the compiler needs Thrift description files to generate
the code in the destination language. It supports also text-based protocols, which could be useful
in some cases such as debugging [Slee et al., 2007]. Binary message formats claimed to be more
efficient than the text-based ones, as their messages are smaller and faster to parse.

A Milestone for sustainable Remote Vehicle Capabilities 47

Microservice-Oriented Architecture

3.3.3 Interaction via APIs

An API is a set of a protocols and clearly defined subroutines that a client can invoke to perform a
task and hides the implementation complexity. A service’s API is therefore a contract which dictates
how the service must be used by its clients. Regardless of the IPC mechanism, it is crucial to specify
a service’s API using an IDL. To avoid incompatibility issues between a service and its clients, it is
recommended to use the API-first approach to define a service. This approach consist in writing the
interface definition beforehand and reviewing it with the clients. Developers can start to implement
the service after the agreement on the API definition. However, the IPC mechanism imposes the
nature of an API definition. For instance, with message-based models, the API consists of the
message channels and the message types. When it is HTTP-based, the contract is made up of
Uniform Resource Locators (URLs), HTTP verbs and the data exchange format.

Furthermore, in the one-to-many communication style, one approach consists in using
the API Gateway model, as illustrated in the Figure 3.6. Similar to the Facade pattern2, this
style is suitable for requests that span on multiple services. It encapsulates the technological
complexity of the internal architecture and provides a plain interface that fits each client purposes
[Daya et al., 2015]. Therefore, it is responsible for request routing to the appropriate services –which
might include the service discovery pattern discussed in Section 3.5 –, composition of responses
and eventually protocol translation between endpoints. The API Gateway’s capabilities can be
extended to other responsibilities such as access control, health check, load balancing, caching,
metrics collection, just to mention a few [Nadareishvili et al., 2016, Richardson, 2018]. The first
benefit of this communication mechanism is the reduced number of round trips between clients and
the application, since the internal symphony is hidden from them. Moreover, its extended capabilities
(caching and load balancing for instance) might improve the system performance. However, the
more its responsibilities are extended, the more efforts must be committed into it development.
Consequently, the API Gateway could be a bottleneck of the whole system, or even become similar
to a god class.

Figure 3.6: API Gateway communication style. The API Gateway is responsible for
endpoints discovery, request routing and response composition.

Developers have to keep in mind the evolution of APIs, no matter if they are used in a monolith
or in a microservices architecture. In the first case, it is quite an easy task, as there are tools which
support developers during the re-writing of an API, and the compiler notify incompatibility errors
to developers very quickly. In a MOA, it is more sensitive, since the consumers may be developed
in other teams, the scope isn’t always well-known and changes cannot be imposed to clients in a

2This pattern is well discussed in [Kuchana, 2004].

A Milestone for sustainable Remote Vehicle Capabilities 48

Microservice-Oriented Architecture

mandatory and unilateral fashion. In such cases, developers on both sides (API and clients) should
follow a software design guideline, namely the robustness principle, also known as Postel’s law3

[Richardson, 2018]. For instance, they should always implement backwards compatibility updates.
When a major incompatible update occurs, older versions of an API must still be supported for
a certain period of time. In a HTTP-based protocol for instance, developers should deploy many
gateways to the API with a redirection policy to handle requests supporting older versions. One
approach might be to embed the API’s version number within the URL if the API is HTTP-based, or
as a part of the message when it is message-based for instance [Richardson, 2018]. For the sake of
simplicity and clarity between the stakeholders, [Richardson, 2018] recommends to use the semantic
versioning. Aside from optional labels for pre-release and build meta-data, this type of versioning
proposes to append the revision number to an API following the format Major.Minor.Patch, where
each part is incremented as follows [Preston-Werner, 2009]:
1. Majorwhen incompatible API changes are made;
2. Minorwhen a functionality is added but the API remains backwards-compatible;
3. Patchwhen backwards-compatible bug fixes are published.

3.3.4 How to improve the system resilience

In every system, there is always a risk of failure. A service can be down for any reason, such as network
errors, incompatibilities with the deployment environment target, bugs, maintenance routines and
so on. In distributed systems, or even worse in a MOA-based application wherein services are
developed by different teams, with diverse technologies underneath and are separate processes,
the risk of failure is higher. An approach to handle failures and improve the application resilience
and additionally the user experience, is discussed in [Bruce and Pereira, 2018, Richardson, 2018,
Daya et al., 2015] and consists of:

• using network timeout values: a client should never block indefinitely, but wait for a response
in a timeout-based manner, to be sure that resources are never blocked sine die;

• setting a limit to the number of outstanding requests: a service should have a maximum
frequency of requests per client it must reply. When the limit is reached, it is worthless to
make additional requests, and the service should not bother to respond;

• implementing the circuit breaker pattern, to detects the rate of failed requests. If this rate
exceeds a configured threshold, the circuit breakermust be opened so that further requests fail
immediately. If a large number of attempts are failing, the corresponding service is probably
unavailable and sending more requests to it is useless. The client should try again later and,
if successful, the circuit breaker must be closed. This pattern prevents a cascading failure by
allowing a microservice to keep operating when a related service fails, and giving the failing
service time to bounce back;

• providing fallbacks: a fallback is a logic pattern which is executed when a request fails. For
instance, a client could use cached data or default values. This principle might be used in
combination with the circuit breaker pattern above;

• using the bulkhead partitioning approach, which consists in isolating failures to small portions
of the application, like bounded contexts. An example could be separate connection pools to
an endpoint, instead of one pool with all connection instances.

Fortunately, many libraries that implement these patterns are already available on different
platforms. Although this pattern has benefits, implementing it could have a negative impact on the
application’s performance, as it needs to track the state of the connection over a series of requests.
Consequently, the points of failure to be “patched” should be wisely chosen and important factors
such as the cache policies should be carefully designed. After reviewing different ways how services
should collaborate to handle client requests,we discuss some concrete implementation technologies
in the following section.

3It states: “Be conservative in what you do, be liberal in what you accept from others.”

A Milestone for sustainable Remote Vehicle Capabilities 49

Microservice-Oriented Architecture

3.4 Inter-process interaction technologies

There are several technologies which implement the categories of the IPC model we discussed
in Section 3.3. According to the requirements and the handling process of requests, different
technologies might be used within the same MOA, or even to respond to the same incoming client
request. Some popular are discussed below.

3.4.1 ReST communication model

ReST is an architectural style that does not limit the implementation of resources to certain
predefined models. Although it is an IPC style that is commonly used over HTTP, it is possible to
targeted systems to select an implementation that best fulfills their own requirements. It allows
clients to access andmanipulate resources using a predefined set of stateless operations. A resource
is a business object or a collection of business objects. ReST uses the HTTP verbs to manipulate
resources referenced via Uniform Resource Identifiers (URIs). For instance, the response to a GET
request might be an object in XML, HyperText Markup Language (HTML), JSON or in some other
defined format. A POST request intents to create a new resource, a PUT to update a resource if
it exists, or to create it otherwise. The DELETE verb, as the name speaks for itself, requests to
delete the resource referenced by the URI. Since its design in 2000 [Fielding, 2000], ReST has
evolved despite some misunderstandings amongst the developers. [Fowler, 2010] mentioned even
a maturity model:

• level 0: clients make RPCs by sending HTTP POST requests to its unique URI endpoint. Each
request contains the action to perform, the business object and any eventual parameters;

• level 1: many resources are taken into account here. Rather than calling a method using a
single endpoint, clients call a method on one particular business object (the starting point)
which returns information to use on the next call to another endpoint. Therefore, to perform
an action on a resource, a client must know the sequence of POST requests to perform and how
to use the parameters;

• level 2: HTTP verbs come into action, but the mechanism is the same as at the level above.
The most important change here is the introduction of the GET request. This verb is described
as a safe operation, as it doesn’t make any significant changes to the state of a resource. This
enables services to use caching for GET requests;

• level 3: this level is based on hypermedia controls. It introduces the concept of discoverability,
allowing a protocol to be more self-documented. In fact, the representation of a resource
returned by a GET request contains information (URIs, actions) to perform the allowed actions
on that resource. One of the benefits of hypermedia controls is that the sequence tomanipulate
a resource doesn’t have to be hard-coded in clients anymore. Rather than to knowwhat to do
next, the hypermedia controls in the response tellwhere to send the next POST request and how
to perform it. Another benefit is that clients do not have to guess actions that can be performed
on a resource in its current state by exploring the protocol. The hypermedia controls offermore
flexibility to the server developers team for updates with new capabilities by putting new links
in the responses. Even when a sequence change, the client developers just have to follow the
new one specified in the GET response.

Beyond the simplicity and thewide use of the protocol underneath, HTTP-based protocols carry some
relevant advantages. They can be easily tested with a browser or via client for URL (cURL). They
are also suitable for request/response communication style and easy configurable on a firewall. As
they do not need an intermediate broker, the communication architecture is simplified. However,
such protocols have drawbacks. They can be used only for the request/response interaction model.
It is not always straightforward to map the operations of a business object to an HTTP verb
[Richardson, 2018]. For instance, when the business logic is not carefully designed, POST and PUT
might perform the same operation on a business object. One solution commonly used consists in

A Milestone for sustainable Remote Vehicle Capabilities 50

Microservice-Oriented Architecture

putting the verbwithin theURL. Due to the absence of a broker, both the client and the servermust be
running till the exchange terminates. The server availability is therefore reduced. Moreover, clients
must know the various URLs of services theywant to interact with [Richardson, 2018]. It might be a
tedious task for clients to keep the endpoint locations up-to-date, especially in a MOA, where service
instances are updated frequently. Fortunately, there is the service discovery concept to alleviate this
shortcoming, which we discuss in Section 3.5.

3.4.2 The gRPC framework

GRPC is an open source, high-performance, cross-platform RPC framework, which uses HTTP/2
as transport and Protocol Buffers as the IDL (although many other message types and encoding
are supported). It allows services to interact efficiently by providing support for load balancing,
tracing, health checking, authentication, bidirectional streaming and flow control, blocking or
non-blocking bindings, cancellation and timeouts [Google, 2015]. The Protocol Buffer compiler
generate language-specific bindings which are called stubs for the client-side and skeletons for the
server-side. When a client calls a method on the stub, it is transparently handled by the underlying
protocol up to the skeleton (Figure 3.7).

Figure 3.7: gRPC communication mechanism [Google, 2015]. Client requests are
handled transparently by the protocol underneath.

AgRPC interface ismade up ofone ormore services and request/responsemessage definitions.
A service definition is similar to a Java interface, i.e. a collection of strongly typed methods. As well
as supporting simple request/response RPC, gRPC supports full-duplex streaming RPC. A server can
reply with a stream of messages to the client, and reversely, a client can send a stream of messages
to the server. Protocol Buffers, as discussed in Section 3.3.2, is an efficient, compact, binary format.
It uses a tagged format, i.e. each field is numbered and has a type code. A message recipient can
extract the fields that it needs and skip over the fields that it doesn’t recognize. Therefore, gRPC
allows APIs to evolve while remaining backwards compatible [Richardson, 2018].

Many benefits are claimed by the community behind the gRPC. The high scalability and the
low latency it offers are its strengths which make it suitable for distributed systems, specially for
polyglot services in a MOA style. It is an accurate, efficient and language independent modern
protocol, designed in a layered fashion which supports many non-functional requirements and
infrastructural services. gRPC and Protocol Buffers provide an easy way to define a service contract
and to auto-generate reliable libraries for clients and the servers providing the back-end. Clients
can take advantage of advanced streaming and connection features. That helps to save bandwidth,
to perform more over fewer Transmission Control Protocol (TCP) connections and to save processor
and battery usage, which make it convenient for mobile clients [Google, 2015]. However, it has

A Milestone for sustainable Remote Vehicle Capabilities 51

Microservice-Oriented Architecture

a shortcoming. In case of major changes on the server side, the skeleton and stubs must be
regenerated and redistributed to all clients. Furthermore, clients can not use cURL as simple as
in ReST model, for example for debugging purposes.

Since ReST and RPC communication models are synchronous4 request/response interaction
styles, failures are unavoidable, specially in a distributed system. In a microservices architecture,
even with the best efforts, there is always the possibility that a service is unavailable or is revealing
such high latency that the system can not afford. A partial failure occurs when some but not all
parts of a distributed application are unavailable. We discussed in Section 3.3.4 how MOA-based
applications should handle such scenarios and avoid cascade of failures, which is a crucial point for
systems who aim to be high fault-tolerant.

3.4.3 Apache Thrift

Apache Thrift is a framework forwriting cross-platform RPC clients and servers, and provides an IDL
in a syntax close to that of the C/C++ programming language to define service contracts. Similarly
to the gRPC, client stubs and server skeletons must be generated via the Thrift compiler so that
they can interact seamlessly. The definition of a Thrift interface is the same as that of the gRPC
framework, i.e. a set of services and methods. Thrift methods also can return a value or not.
Those returning a value correspond to the request/response communication style in blocking mode:
the client blocks until a response is received. The methods without a return value are used as
asynchronous interactionmechanism: the server is notified, it executes the implementation and does
not send a response. Thrift supports many message formats, such as binary, compact binary which
are predefined formats, and JSON formats as human- and browser-friendly alternatives. Thrift also
supports various transport protocols including raw TCP and HTTP [Apache, 2007, Kleppmann, 2017,
Newman, 2015].

Besides it offers cross-language serialization with low overhead due to the use of binary
format, this framework has some advantages. Its simplicity is one of its strengths. Its code is
simple and free of unnecessary dependencies and does not need any XML configuration files. Its
syntax enables natural language bindings and conforms to the most common idioms in the most
used platforms [Apache, 2007, Newman, 2015]. The core library is maintained consistent, as the
language-specific features are implemented in corresponding extensions. The application-level
and the serialization-level data exchange formats are cleanly separated. Therefore, they can be
modified independently [Apache, 2007]. However, like with gRPC, to propagate an update from the
server-side to clients might be very cumbersome.

The review of some synchronous communication mechanisms above shows that they offer
a flexibility in terms of protocols to use and the data exchange format. Therefore, their efficiency
relies on these both components. But, these interaction styles are not suitable when a client has to
cooperate with many services, sometimes in a parallel way. In the next paragraph, we discuss some
protocols that enable this one-to-many communication style.

3.4.4 Message-based communication

This style is used for asynchronous interaction between endpoints exchanging only messages via
message channels, i.e. requests and responses are sent via formally-defined message components.
The request sender does not expect an immediate response and implement a non-blocking execution
logic. The same channel can be used by many providers for sending and consumers for receiving
messages. The channel can be distinguished into two types, namely the point-to-point type where
a channel delivers messages to exactly one of the consumers and the publish-subscribe type where
each message is delivered to all attached consumers.

4Even when a client sends a notification to a server without expecting a response, the server still has to reply.

A Milestone for sustainable Remote Vehicle Capabilities 52

Microservice-Oriented Architecture

Amessage has two parts, namely a header (or meta-data) and amessage body. The header is
made up of two elements, which are:

• a unique message id, generated by either the sender or the messaging infrastructure;

• a return address, which is optional and contains the name of the message channel that a
response should be written to.

Messages might also be classified into three types [Richardson, 2018]:

• command used to tell the receiver to do something;

• event to notify the sender that something happened. This type is suitable to use over a
publish-subscribe channel;

• document which carries data.
Messages are commonly relayed between endpoints via a broker, which is an intermediary module
responsible to deliver messages to the right network location. It might also implement others
roles such as message validation, message buffering, message transformation, delivering failures
handling and so on. To select the a broker, designers should consider if it implements standard
message-based protocols likeMQTT, AMQPorSTOMP.The popular ones are RabbitMQ,ActiveMQand
Apache Kafka just to mention a few. Although they support standards, there are slight differences
between their respective implementations. For instance, RabbitMQ uses exchanges and queues
[Videla andWilliams, 2012], while Apache Kafka is topics-based [Apache, 2016] and ActiveMQ, an
implementation of the Java Message Service (JMS) 1.1 specification, handles messages via queues
and topics [Snyder et al., 2011]. Other criteria should also be taken into account when choosing a
message broker, such as:

• messaging ordering: this could be a critical point, specially in a concurrent environment where
the processing order matters;

• delivery guarantees: what are the delivery policies? does the broker implement, for instance,
message acknowledgment?

• persistence: in some cases, messages must survive broker crashes, and the persistence is one
solution to enable it;

• durability: when a consumer is disconnected from the broker, will it still receive the messages
that were sent if it reconnects?

• scalability: how scalable is the broker?

• latency: what offers the broker in terms of end-to-end latency?

• competing consumers: are competing consumers supported and under which policy?

All these properties cannot be fulfilled at the same time. Therefore, each broker implements
its own compromise. For instance, the message ordering might increase the broker latency.
Or, the persistence and the delivery guarantee could have a negative impact on the latency
[Richardson, 2018]. The designers should then make choices according to the application
requirements.

To delivermessage to competing consumers, Apache Kafka uses the sharded channel principle
[Richardson, 2018]. The idea is to split a channel into many partitions and each partition is assigned
to only one instance of a service. The broker uses the message meta-data to redirect it to a single
partition as illustrated in the Figure 3.8. Another challenge of message-based communication
protocols is to handle duplicate messages. In the best scenario, a message is delivered only once.
But, a failure of any element in the message processing chain could lead to multiple delivery of the
same message. Such a case occurs commonly when the acknowledgment of a message is lost after
its consumption. The broker will consequently send it again. Since the broker does not have the
capability to be aware of the lost acknowledgment, it is up to the service to handle this situation
itself. One idea might be for the consumer to keep a record of messages’ ids that were already
processed [Richardson, 2018].

A Milestone for sustainable Remote Vehicle Capabilities 53

Microservice-Oriented Architecture

Figure 3.8: Partitioned channel to handle competing consumers [Richardson, 2018].

Some benefits of message-based protocols are [Daya et al., 2015, Richardson, 2018]:

• loose coupling between the provider and the consumer, as the producer only needs to know
the appropriate channel through which to send the message. It does not have neither to know
the network endpoint of any instance of the consumer, nor to perform a discoverymechanism;

• message buffering: as the communication between the provider and the consumer is
asynchronous, they do not have to be available during the data exchange process. Once a
message is received by the broker, it is maintained it in a buffer (or a queue) until the consumer
can handle it;

• flexibility of client-service communication: with some ingenious adjustments, message-based
protocols can be used to implement all of the interaction styles described in Section 3.3.1;

• improved maintainability: since many of them implement standards, an update on brokers, or
even replacing one with another might not require changes on clients and services;

• explicit inter-process communication, as message-based protocols put clear bounds between
services and a remote call on a service via a message.

Like every technology, they also have some drawbacks. Message-based protocols add another
complexity layer, as a broker is another system component that needs to be installed, configured,
administrated, monitored and maintained. A broker is one bottleneck of the system, and must
therefore be highly available with high performance. Otherwise, the whole application might not
function properly. Another shortcoming is the publishing of a message as a part of a transaction that
requires updates on the data tier. This operation cannot be performed atomically, since it involves
more than one bounded context and a distinct component of the architecture, the message broker.
It is very challenging to guarantee the data consistency in such an environment, as wewill discuss in
Chapter 4 alongwith some possible solutions. On the other hand, implementing themessage-based
communication through the request/response mechanism might be complex, as it requires more
work to be operational.

Which interaction style to use is a matter of trade-offs to make, taking into account
the non-functional requirements of the application. After a review of both synchronous and
asynchronous interaction styles, we saw that the former could have a negative impact on the
application availability, besides its efficiency in terms of data exchange. It might be used where
the availability is not in foreground. Conversely, the latter is based on some standards and improves
the system’s availability but is not suitable for transactional environments. Given that both styles can
be found within the same MOA, it is up to the designers to detect the communication paths where
one style is more suitable than the other.

A Milestone for sustainable Remote Vehicle Capabilities 54

Microservice-Oriented Architecture

3.5 Service Discovery

In order to be able to send a request, a client requires a endpoint to forward it to. In a local physical
environment, it is easy to obtain this information. In a distributed architecture with separated
business logic implementations that are encapsulated behind various dynamic network locations,
to identify such endpoints becomes more complicated. In the cooperative ecosystem discussed
in Section 3.3, this concept plays a crucial role to implement successfully any of IPC technologies
mentioned in Section 3.4. This discovery mechanism requires a service registry, which is a sort
of highly available ledger with the accessible endpoints of service running instances within a given
system and updated regularly using a heartbeat mechanism. That being said, the clients have to
query this registry to receive the list of available services and then redirect their requests accordingly.
The use of the service registry is distinguished into twomain groups, according to the discovery style
implemented:

3.5.1 Application-side service discovery

Also known as client-side discovery, the detection of endpoints locations, the routing of requests and
the load balance strategy are implemented on each client (Figure 3.9). Therefore, each client needs
its language-specific library or framework to perform these operations. More, each time when they
want to invoke a service, clients need to query the registry to retrieve the up-to-date list of available
instances. These non-functional responsibilities are a step out of the client’s scope and therefore,
are a distraction for client developers [Richardson, 2018].

Figure 3.9: Client-side discovery. Each client is responsible to identify locations to send
its requests to.

3.5.2 Platform-side service discovery

In this case, discovery operations are deployment infrastructure responsibilities. The clients need
only to send their requests to a well-known location – an API gateway, a router or a Domain Name
System (DNS) – and the routing and load balancing tasks are fully handled by the deployment
platform, as illustrated in the Figure 3.10. The clients are thus rid of language-specific framework
to implement the endpoints detection and the discovery mechanism is accessible by all clients
regardless of their programming language. However, this style allow only the discovery of services
which are deployed within the same platform [Richardson, 2018].

A Milestone for sustainable Remote Vehicle Capabilities 55

Microservice-Oriented Architecture

Figure 3.10: Platform-side discovery. The detection, routing and load balancing logic
are implemented on the deployment side.

3.6 Summary of the chapter

We discussed in this chapter the MOA and its inherent design principles. Then, we discussed various
communication mechanisms and interaction technologies in distributed environments and finished
the chapter with service discovery techniques. In the next chapter, we discuss the persistence in a
distributed system such as a MOA, its challenges and solutions to face them.

A Milestone for sustainable Remote Vehicle Capabilities 56

Chapter 4

Data persistence in a Microservice
Architecture

You are only as young as the last time
you changed your mind.

– Timothy Leary

In amonolithic application, transactionmanagement is easier as it uses a single database (or a shared
database with a single access gateway), and there are plenty of frameworks and programmatic APIs
for this purpose compatiblewithmanyprogramming environment. But, as discussed in Section 3.1.2,
one key characteristic of the MOA is the data-tier “autonomy”. Moreover, a microservice architecture
could have many different data store technologies, which refers to the concept often called polyglot
persistence (Figure 3.4). Then comes the question, how to maintain data consistency in a whole
microservice-based application. In the following sections, wewill discuss different methods to solve
this issue.

4.1 Distributed Transactions

To maintain data consistency in a more general sense, transactions must be used. Atomicity,
Consistency, Isolation, Durability (ACID) transactions are helpful as they enable a locking mechanism
on data during the execution of requests. In a MOA, a transaction may involve many services.
Distributed transactions could be a solution for microservice-based systems. A distributed
transaction is a database transaction including one or more statements that involve two or more
nodes of a distributed database during a data manipulation process. Usually, there is a transaction
manager which is responsible for creating and managing the global transaction. Distributed
transactions must also have all ACID properties, where atomicity guarantees all-or-nothing result
for each node.

4.1.1 The two-phase commit (2PC)

This traditional approach is based on the X/Open Distributed Transaction Processing (DTP) Model of
the X/Open eXtended Architecture (XA) Group. XA specifies how a transaction coordinatorwill roll up
the transactions against the different data stores into a transaction and perform via the 2PC protocol
[Open_Group, 1991]. The two phases of this protocol as illustrated in the Figure 4.1 are:

1. the commit-request phase, or voting phase, in which a coordinator asks to all participating
nodes to be prepared for either committing or aborting the transaction and to vote, either
“yes”: commit (the node’s local fragment execution ended properly), or “no”: abort (a problem
occurred with that local fragment);

A Milestone for sustainable Remote Vehicle Capabilities 57

Data persistence in a MOA

2. the commit phase, duringwhich, based onvotes of participating nodes, the coordinator decides
whether to commit (only if all have voted “yes”) or abort the transaction (if there is at least one
“no”), and broadcast the result to all participating nodes. These nodes then follow with the
required tasks (commit or abort) with their local transactional resources and their respective
fragment of the transaction’s other output if applicable.

Figure 4.1: The 2PC.

The use of the XA model requires XA-compliant databases, message brokers, database drivers,
messaging APIs and a communication policy between nodes that shares necessary global transaction
data. Most RDBMSs are XA-compliant aswell as somemessage brokers [Richardson, 2018]. The fact
that this protocol is based on the locking-mechanism is its main drawback. If the coordinator fails
permanently, some nodes will never resolve their transactions: after a node has sent an agreement
message to the coordinator, it will block until a commit or rollback is received, which leads to poor
performance.

4.1.2 Variants of the 2PC

Some variants were proposed to optimize this protocol. For instance, the so-called presumed
abort or presumed commit consists in assuming an abort if during the system recovery from a
failure, there is no evidence found for commit of some transaction [Weikum and Vossen, 2001,
Bernstein and Newcomer, 2009]. There is also the tree 2PC protocol, also called recursive 2PC,
where the participating nodes are invoked in a tree structure, with the coordinator as the root
and messages are propagated recursively [Weikum and Vossen, 2001]. The Dynamic two-phase
commit (D2PC) on the other hand, has no predetermined coordinator, but rather is determined
dynamically by racing agreement messages over the transaction tree at the place where they collide
[Weikum and Vossen, 2001, Raz, 1995]. The three-phase commit (3PC) protocol was also proposed
in [Skeen and Stonebraker, 1983]. It is a non-blocking protocol where the idea is to set a required
timeout before a transaction either commits or aborts. This property ensures that resource locks are
released not later than a certain period of time.

4.1.3 Is the 2PC suitable for MOA?

Distributed transactions are a very good solution for data consistency in monoliths and applications
with a single database. But, they are not suited to MOA-based systems, since their performance is
not good in such systems. One reason is that modern technologies are not native XA-compliant.
Although NoSQL databases support atomic operations, i.e. changes on a single row or a single
document, it is up to developers to handle atomic transactions in the source code. More, distributed
transactions are not supported by modern message brokers [Richardson, 2018]. Therefore, the
use of distributed transactions with modern technologies could be very cumbersome and is not
recommended. Furthermore, distributed transactions are synchronous calls and therefore reduce
availability. In order for a distributed transaction to commit, all the participating nodes must be

A Milestone for sustainable Remote Vehicle Capabilities 58

Data persistence in a MOA

available. To address the issue of maintaining data consistency in a MOA-based application, another
approach should be used, which also take into account some of the main characteristics of a
microservice, namely loose coupling, autonomous and bounded contexts.

4.2 The Saga pattern

The Saga interaction pattern or Saga pattern, is a transaction distributed both in time and in space
that avoid locks on resources, uses compensation to handle failures, aggregates smaller potentially
ACID transactions, and typically uses a coordinator to complete or abort the whole transaction.
Each small transaction manipulates data within a single service. The initial small transaction is
triggered by the external request corresponding to a business use case. Each subsequent step
is triggered by a message or an event published at the completion of the previous transaction.
If a small transaction fails because it breaks a business rule, in contrast to rollback in ACID
transactions, the Saga executes a series of compensating transactions. These compensations are an
attempt to restore the original state, or an equivalent, and are business-specific [Richardson, 2018,
Bruce and Pereira, 2018, Rotem-Gal-Oz, 2012]. For example, the compensating action for making
an order is canceling that order eventuallywith penalty fees. This pattern is often called long-running
transaction, but from a more strict point of view, it is not quite correct, since Saga does not fulfill
all ACID properties of a transaction and the interaction is distributed both in time and space. For
instance, the compensation process may not be able to undo the changes already made, as the
process could involve an external service upon the coordinator has little to no influence. The terms
transactional workflow or distributed business transaction seem to be more adequate.

4.2.1 Achieving atomicity through an Event datastore

One approach to achieve atomicity without relying on the 2PC consists in using an Event data
store in the persistence tier, which functions as a message queue [Richardson, 2018]. It stores
the various sequential states of the manipulated business entities. When the application begins a
database transaction, it updates the state of the business entities, inserts an event into the Event
data store, and commits the local transaction. These two operations has to be done atomically. If
the service crashes after updating the database but before publishing the event, the persistence tier
is in an inconsistent state. In the mean time, a separate thread queries regularly the Event data
store, publishes an event when it detects an update, and then marks it transitionally as published
(Figure 4.2). One advantage using amessage broker for event distribution is to ensure loose coupling
of the Saga participants. Moreover, the broker offers a certain guaranty that the Saga will complete,
as it can buffer the event-message until it will be delivered. However, this approach is potentially
error-prone since an event might be lost. Another limitation of this approach is that it is challenging
to implement it, specially when using NoSQL databases due to their limited transaction capabilities
[Richardson, 2018].

4.2.2 Achieving atomicity through Transaction log

Instead of a separate Event data store, another way consists in using the embedded database
transaction’s log when possible which is observed by a separate thread as previous (Figure 4.3).
The major drawback is the format of the transaction log. It is proprietary to each database and can
change between database versions. Also, it can be tough to infer high-level business events from the
low-level updates recorded in the transaction log [Richardson, 2018]. There is also the event sourcing
concept proposed in [Richardson, 2018, Nadareishvili et al., 2016]. Rather than store the current
state of a business entity, the idea is to store a sequence of state-changing actions. The application
reconstructs an entity’s current state by re-executing the actions. A new action is appended to the
sequence whenever the state of a business entity changes.

A Milestone for sustainable Remote Vehicle Capabilities 59

Data persistence in a MOA

Figure 4.2: Achieving the atomicity with an Event datastore [Richardson, 2018]. Every
change is inserted in the event table so the publisher can send updates to the broker.

Figure 4.3: Achieving the atomicity with a transaction log [Richardson, 2018]. A thread
processes the datastore’s transaction log and publishes changes to the message broker.

Since the Saga pattern is a set of eventual ACID transactions, it is important to keep in mind
that the effects of each of a local transactions are visible as soon as that transaction commits.
Consequently, the developers must take this into account during the design of the business logic,
which should cope with eventually consistent data, also known as Basic Availability, Soft-state,
and Eventual consistency (BASE) data model. When they cannot rely on eventual consistency and
soft state and require transactional consistency, they could design more coarse-grained services to
encapsulate the business logic into a single service.

There are some patterns that help to implement the Saga model. For instance,
[Richardson, 2018, Rotem-Gal-Oz, 2012] proposed the Workflodize pattern, the Orchestration
pattern, the Reservation pattern and the Choreography pattern, while [Bruce and Pereira, 2018] also
proposed the other strategies, which we discuss in the next sections.

4.2.3 Workflodize-based Saga

Also called interwoven saga, this pattern aims to design the business logic in small blocks called
activities, that are easy to rearrange when new requirements come [Bruce and Pereira, 2018,
Rotem-Gal-Oz, 2012]. The logic is therefore a flow of activities triggered by a message or an event.
Each activity can be reused and tested individually, making the overall test easier and faster. To

A Milestone for sustainable Remote Vehicle Capabilities 60

Data persistence in a MOA

successfully implement this pattern, the designers should use the API-first approach mentioned in
Section 3.3.3, otherwise the rearrangementwill lead to communication issues between the activities.
The use of workflow engines is also recommended, as they are helpful to visualize and model
workflows. Besides the reusability of the core activities, this pattern enhances the business flexibility
by allowing to change its behavior dynamically [Rotem-Gal-Oz, 2012]. Applying this to the Saga
enables each service to have an internal flexible workflow that follows the sequence and to have
different paths of the interaction.

4.2.4 Orchestration-based Saga

This pattern is similar to the Workflodize one above. But, the latter is constrained within
the boundaries of a single service, while the former is used to coordinate multiple services
[Bruce and Pereira, 2018, Rotem-Gal-Oz, 2012]. This pattern is related to the Orchestration
collaboration model discussed in Section 3.1.2. An orchestrator triggers the Saga and has the
responsibility to tell to the Saga participants what to do. They communicates via the request/reply
interaction style. To execute a Saga step, the orchestrator sends a request to a participant with a
command containing the operation to perform. Once the saga participant performs the operation, it
sends a reply message to the orchestrator. The orchestrator then processes the response message
and determines which saga step to perform next [Richardson, 2018].

A good way to model an orchestrator is to use a state transition diagram [Richardson, 2018,
Rotem-Gal-Oz, 2012], not a flowchart. The former consists of a set of stateswhere a set of transitions
between states are triggered by events, while in the latter, the transitions occur automatically upon
completion of the previous activity. In the Saga, each transition corresponds to an invocation of
a participant via an event or a message. And, each state represents the system state after the
completion of a transaction performed by a participant. Therefore, the current state and the outcome
of the transaction determine at any time, the state and which action to perform if any.

As benefits of the orchestration, we could start to mention how it externalizes processes
from services and simplifies the business logic. The Saga coordination logic is localized in the
Saga orchestrator. The domain objects are simpler and have no knowledge of the Sagas that they
participate in [Richardson, 2018, Rotem-Gal-Oz, 2012]. It also increases the runtime governance by
enabling the monitoring of flows in progress. In addition, a better understanding of the application’s
health is offered, while improving the composability and the changeability of the participants
[Rotem-Gal-Oz, 2012]. One drawback is that the Saga logic is centralized in the orchestrator.
Then, for the sake of clarity and simplicity, it is recommended to design orchestrators that are
solely responsible for sequencing and do not contain any other business logic [Richardson, 2018],
analogous to the design pattern strategy1.

4.2.5 Reservation-based Saga

The Reservation pattern enables services to provide efficiently partial commitments and limited level
of guarantees while preserving their autonomy and consistency. This pattern is particularly helpful
during the compensation process. It has three responsibilities [Rotem-Gal-Oz, 2012]:

• reservation: it makes a reservation when a message “reserving” is received. This corresponds
to the initialization phase when a command arrives for a local transaction. Then, in addition
to allocate the necessary resources, the service is required to set a timeout waiting for the
“confirming” message. If the confirmation does not come after the expiration time, the
resources are released and the reservation is canceled;

• validation: it makes sure that a reservation is still valid before finalizing the process. For
instance, this step could consist in making sure that the required resources are still available
and eventually have been locked;

1Design patterns are very well discussed in [Kuchana, 2004].

A Milestone for sustainable Remote Vehicle Capabilities 61

Data persistence in a MOA

• expiration: it cancels a reservation under certain conditions. For example, if a command with
a higher priority comes, the resources that were already reserved could be reassigned to this
command, invalidating hence the previous reservation. Expiration on resources might also be
time-based.

The Reservation pattern allow to perform the Saga by implementing a two-pass protocol. The
Saga initiator requests or notifies each potential participant to reserve itself for the Saga. Each
participant tries then to reserve itself (and eventually other resources) and replies back whether
it is successful. If the reservation phase in all of the involved participants completes successfully
(within a timeout), the initiator confirms the Saga to their specific instances [Rotem-Gal-Oz, 2012].
Nevertheless, this pattern has some inherent risks. For instance, during the initialization phase, many
Saga initiatorsmight reserve different participants concurrently. This could lead to a deadlock, which
can be avoided by enabling each participant to remove its locks autonomously. There is also the
Denial of Service (DoS) issue, where a malicious Saga initiator makes reservations on participants
repeatedly. One solution to prevent this shortcoming is the use of the Service Firewall pattern2.
And, this pattern is a two-phase-based process, which is very similar to the 2PC we discussed in
Section 4.1.

4.2.6 Choreography-based Saga

Similarly to the choreography interaction model discussed Section 3.1.2, there is no central
coordinator to command the saga participants. They react rather to one another incoming messages
or events independently. In this scheme, a Saga participant updates its database and throws an
event as a part of a database transaction. Therefore, each step of a choreography-based Saga
modifies the persistence tier and publishes a message [Bruce and Pereira, 2018]. One benefit of
this style is that services only require to throw events when they manipulate the business entities.
Another advantage is that the Saga participants are loosely coupled and don’t have to know each
other. However, choreography enables cyclic dependencies between the services, since they have
to subscribe to one another’s events. Another disadvantage is that some domain objects become
more complex, as these objects might have to encapsulate additional states of services they are
coming from. Finally, the Saga logic is not located in a single service, but is rather implicit. This
absence of explicitness of the sequence makes the implemented Saga more difficult to understand
by developers [Richardson, 2018, Rotem-Gal-Oz, 2012].

4.2.7 Consistency patterns

To achieve data consistency in a distributed architecture, there are many different approaches.
Besides compensation-based techniques as those just discussed above, which consist in
performing action(s) to undo previous actions, the are also other strategies. These are
[Bruce and Pereira, 2018]:

• retry strategy, whereby a query is retried until either it succeeds or reaches a timeout;

• restart strategy which consists in performing a reset to the original state and to try again;

• ignore strategy, where errors are just simply ignored (head-in-the-sand policy);

• tentative operation strategywhich consists in attempting a provisional operation and confirm
or cancel it later.

Which strategy to use depends on the application domain or business requirements. The retry
strategy can be used when a required resources is just temporarily unavailable. The request is then
re-executed until timeout if the resource is not released before. When processing a large data set,
it might make sense to use the ignore strategy, as processing the overall data set might be very
expensive – in time and resources.

2The Service Firewall pattern is well discussed in [Rotem-Gal-Oz, 2012].

A Milestone for sustainable Remote Vehicle Capabilities 62

Data persistence in a MOA

There are many Saga-related patterns which are very helpful to implement this data
consistency style. But due to inherent characteristics of the MOA style, ACID transactions can only
be guaranteed till a certain level, regardless the selected pattern to implement. It is hence crucial
to incorporate eventually consistent states of the whole system during the application design and to
prepare countermeasures accordingly. After all, functional requirements play an important role in the
decision of patterns to use to improve system’s reliability. As we know how to manipulate business
objects in a distributed environments, to retrieve them is as much as relevant for the system. In the
next section, we discuss some mechanisms to query data that involves bounded contexts.

4.3 How to handle Queries in MOA?

While it is important tomaintain data consistency that spansmanymicroservices, it is also a challenge
to implement queries that retrieve it from all of them. In monolith applications, retrieving data from
the persistence tier consists commonly in join-queries and they cover most of business cases, if not
all of them when they are smartly designed. In a polyglot persistence context, however, it is not
straightforward to write data queries, even when a foreign key-based mechanism is implemented
between the DBMSs. There are two patterns that help to build queries in a MOA, namely the
Composition Pattern and the Command Query Responsibility Segregation (CQRS) Pattern.

4.3.1 Composition Pattern

Queries are designed similarly as the design pattern composite3, i.e. a query operation consists in
calling the services that own the required data and bringing the results together. As illustrated in the
Figure 4.4, this mechanism requires two type of participants:

• the composer which holds the whole query and is responsible to split it into the involved
services and to combine the results;

• the provider providing data as a part of the query results from its own persistence tier.

This style is foreign key-based, i.e. the primary key in a part of thewhole query is a foreign key in one
or many other following parts. Consequently, the composer might require to perform in-memory
join operations of eventually large aggregates. The performance of this process depends on the
partition of data, the API exposed by the providers, and the efficiency of the underlying DBMSs
[Richardson, 2018]. The communication between the composer and providers might be one or a
combination of the communication styleswe discussed in Section 3.3,whereas the selection strongly
depends on the contract of each provider.

Although this pattern relies on the foreign key concept, well-know in RDBMSs, it raised some
concerns. The first one is to decide where to implement the provider logic. [Richardson, 2018]
proposed three possibilities:

• on the client side, i.e. each client is responsible design its own composition and split logic.
But, this method is harder to maintain, inefficient, since it might have as many querymodels as
clients, and error-prone due to potential high network latency or security concerns when the
services are behind a firewall, which also needs to be configured accordingly;

• as a responsibility of the API Gateway as mentioned in Section 3.3.3. Here, the query senders
are not encumbered with the composer logic and kept light, which enables many types of
clients such as mobile or web;

• in a dedicated service with a single – or very few – endpoints accessible from clients. This
implementation is suitable for inter-service communicationwithin a local network orwhen the
composer logic is too complex to keep it in the API Gateway.

3This pattern is well discussed in [Kuchana, 2004].

A Milestone for sustainable Remote Vehicle Capabilities 63

Data persistence in a MOA

Figure 4.4: Data query with Composition pattern [Richardson, 2018]. The response is
an aggregation of outputs from involved services.

The developers must also not forget the BASE data model of the microservices architecture
style. Therefore, the design of the composer should also be able to deliver incomplete or inconsistent
data, that is however still relevant for the client. Another recommendation to improve the availability
is to parallelize the calls to providers whenever it is possible [Richardson, 2018]. For instance, if all
the parts of the query use the same primary key, they do not have to be triggered sequentially. For
the parts which can be launched only after the results of a previous one are delivered, the composer
should use a reactive programming model based on Futures Objects or on the design pattern
Observer4. The design of a cache policy for the provider’s data also help to improve availability.
On the other hand, the data model of a provider might not be efficient for certain types of query, or
the its underlying DBMS simply does not support these queries. For such cases, the following pattern
could be a good choice for query implementation.

4.3.2 CQRS Pattern

Although efficiency is one good reason to use this pattern, there are othermotivations that justify its
usefulness. As example, there are use cases where location-based queries are needed from clients,
but data are stored in a text-based DBMS. One idea might be to use a replication of this data in
a geospatial DBMS, but that comes with the challenge to keep replicated data always up to date.
Another argument is the separation of responsibilities [Richardson, 2018, Bruce and Pereira, 2018].
A best practice consists in avoiding to implement amicroservicewith toomany capabilities. It should
be CRUD-focused – regarding its data management with relatively very simple “R”-queries – instead
of being overburden with more complex queries that are out of the service’s scope. For instance,
a service should deliver a list of domain objects selected by identifier with no join operation, and
further complex filters – such as spatial criteria – should be applied outside the service’s bounded
context.

This pattern makes a clear separation between the two following parts as illustrated in the
Figure 4.5:

• the Command side, that changes the state of domain objects. It is a set of methods attached
to each domain object to handle its respective life cycle;

• the Query side retrieves data from the persistence model without changing the state of any
object.

4This pattern is well discussed in [Kuchana, 2004].

A Milestone for sustainable Remote Vehicle Capabilities 64

Data persistence in a MOA

In cases whereby the interaction between these sides is event-based as mentioned in
[Nadareishvili et al., 2016, Richardson, 2018, Bruce and Pereira, 2018], the former publishes domain
events whenever a domain object’s state change occurs. The latter should subscribe to these events
beforehand and handle them accordingly (Figure 4.5b). These sides could also be located in different
services. The communication between them would be then one of any type from those discussed
in Section 3.3. They might also communicate via messages by exchanging document message type
for instance. When the network availability is not a concern, they might interact through one of
the binary protocol-based frameworks discussed in Section 3.4. However, regardless the interaction
style, the query database could be from any DBMS that support business queries efficiently so that
this split would be worthwhile.

(a) A single database for all CRUD operations. (b) A separate database for queries operations.

Figure 4.5: Classic CRUD vs. CQRS pattern [Richardson, 2018]. The update of the
Query-side database is event-based.

This pattern has some benefits. First, as inferred by its name, it enables a clear separation of
concerns. This allow an easier maintenance and optimization of each side independently, even by
different developers teams. Therefore, one has to focus itself on manipulation of domain objects’
life cycle without to worry about exposing the internal state, while the other team aims its attention
at reporting interfaces, similar to the concept of views in RDBMSs [Fowler, 2011]. Furthermore, this
segregation allowan efficient implementation ofqueries byavoiding complex in-memoryprojections
of domain objects [Richardson, 2018, Bruce and Pereira, 2018]. And, the designers of the Query
database might “denormalize” the data model to increase the performance. This pattern allows
also the use of specialized DBMSs, which is more efficient to implement specific queries. Thanks to
the views of the aggregates, the CQRS pattern also overcomes a limitation of event sourcing, which
is primary key-based only [Richardson, 2018, Bruce and Pereira, 2018]. All these benefits make this
pattern suitable formulti-users systemswith high collaborative data, that purpose to deliver complex
reports and infrastructural operations.

However, the CQRS pattern adds a newcomplexity layer, as developersmust ensure replication
of data. Since there is always a time gap for the ripple effect on replicas of a change that occurs on
the command side, they have to design a smart way to avoid delivering inconsistent data to clients.
Moreover, when it is event-based, they must handle concurrent updates and duplicate events. The
developers also have to write queries for each various underlying data store that Query services are
based upon [Richardson, 2018, Bruce and Pereira, 2018]. This pattern should be used only as a last
resort, when it offers significant advantages in comparison to the API Gateway. Otherwise, it could
be counter-productive.

A Milestone for sustainable Remote Vehicle Capabilities 65

Data persistence in a MOA

Embracing the Microservice architecture poses many challenges to face up. Some were
discussed in Section 3.1.5 and helpful solutions to take them up were also presented (Section 3.3,
Section 4.2, Section 4.3). Besides these technical and functional questions, there are also
non-functional and human aspects that should be taken into account. For instance, as the
microservice-related teams grow, each of them might tend to specialize itself in a combination of
programming languages and tools. Even when they use the same programming language, different
teams could choose a different set of tools to achieve the same purpose. This may lead to more
challenges for engineers when moving between different teams. The procedure to build up new
services, as well as the code structure, may be different. Even if teams end up solving the same
problems in various ways, this potential duplication of effort and code is better than having to add
a synchronization layer between the teams [Bruce and Pereira, 2018]. Because of such concerns, it
might be advised to think about building a framework for Microservices.

4.4 Summary of the chapter

In this chapter we discussed the persistence in a MOA and how its is challenging to ensure data
consistency and integrity in such a distributed environment, since to guarantee ACID properties of
queries is not as trivial as in relational datastores. We also discussed solutions and techniques to face
these challenges and patterns to handle queries than span many segments of the persistence tiers.
In the next chapter we discuss utilities to fulfill non-functional requirements in a microservice-based
system. We also describe testing procedures and guidelines that help to perform various tests on a
microservice system.

A Milestone for sustainable Remote Vehicle Capabilities 66

Chapter 5

Microservice Utilities

Quality is value to some person.
– Gerald M. Weinberg

Strict rules on the tools and languages that teams is allowed to use, and enforcing a canonical way of
building up new services across all teams could injure development speed and innovation, and will
eventually lead to the use of the same tools for every problem. However, some common practices
can still be enforced while keeping things free for development teams to choose a purpose-specific
programming language. Some toolsmight be encapsulated for each adopted languagewhilemaking
sure that engineers have access to resources thatwill make it easy to abide by the practices across all
teams [Bruce and Pereira, 2018]. For example, the logging procedure could be centralized and logs
data produced in the same format. The sharing of tools such as circuit breakers, or an event-based
communication bus should be possible. In this way, developers can make their own choices while
having the tools to be aligned with the infrastructure available to run their services. Such tools
form a so-called chassis, i.e. a foundation upon which new services can be built without too much
up-front investigation [Bruce and Pereira, 2018]. Another best practice is to build up automated
software tests. Even if they are usually executed late after the design phase, automated tests should
be integrated as part of the development process [Richardson, 2018]. By this way, developers are
moving towards delivering reliable and robust software. This chapter,which contains twomain parts,
starts to explain the concept of microservice framework, its importance and how to build one, and
then discusses which tests in a microservice architecture should be performed and some rules of
conduct in the domain of service testing.

5.1 Microservice Framework

Some tasks might be shared by many services within an application. Although their independence
from each other, the teams should not have to write such repetitive piece of code for each
microservice they have to implement. Because not only it is error-prone, time-expensive, but also
it could distract the developers from their main objective, which is to focus themselves on the
service’s business logic. The the coming sections discuss this set of common routines, introduced
by the definition of the chassis for Microservices, which makes a common abstraction layer and
recommended architectural choices for the development teams, while enabling them to quickly
bootstrap new services. Then will follow its purposes and how one should be built.

5.1.1 Microservice Chassis

For the same programming language, there is a plethora of libraries just for logging functionalities.
That means, even within a monolith, there could be more than one tool used to perform the same
function. In a Microservice architecture, the time and the risk of selecting a not-ideal library are

A Milestone for sustainable Remote Vehicle Capabilities 67

Microservice Utilities

even increased. It is then recommended to select up to three languages amongst the most widely
used, taking into account the problems to solve [Bruce and Pereira, 2018]. Then, teams should
be built around same languages so that the developers can gain experience on a set of tools.
Based on this experience, new services can therefore be bootstrapped faster. A basic structure
should also be settled regarding the observability, the abstraction of the infrastructure and the
communication between Microservices amongst others, according to the organization’s constraints
and preferences. For instance, if the organization prefers the asynchronous communication style,
it should also provided the set of needed libraries to use an existent event bus infrastructure
[Bruce and Pereira, 2018].

As a general definition, aMicroservice Chassis as illustrated in the Figure 5.1 is a set of libraries
that handle transverse concerns such as logging, circuit breaker, externalized configuration (data
store setup, message broker), service registry and discovery, bus- ormessage-based communication,
monitoring or observability tasks (health checks, distributed tracing, audit, exception tracking,
service’s metrics) and so on [Bruce and Pereira, 2018, Richardson, 2018]. In other words, it is a set
of tools helping to cover non-business-logic functionalities. For such concerns, developers do not
have towrite code (or only a little), and can therefore keep focus on the service’s business tiers. With
a chassis structure, teams are able to select a technological stack, i.e. a language and corresponding
libraries, and quickly build up a service. Such a structure found its significance when the designers
face the following problems:

• deployment in the container from day one;

• aggregation the logging procedure;

• collection of system’s metrics;

• implementation of a synchronous and asynchronous communication style;

• reporting of errors.

Figure 5.1: A Microservice chassis [Richardson, 2018]. It handles cross-cutting
functions to spare repetitive tasks to developers.

To set up the appropriate stack could take some time, up to several days or weeks
[Bruce and Pereira, 2018, Richardson, 2018]. However, this relatively slowprocess can be contrasted
by the fact that once done, each team can focus on delivering functional features more
efficiently.

5.1.2 Purposes of a Microservice Chassis

As mentioned in Section 5.1.1, a microservice chassis aims principally to build up services easier
and faster while providing a set of standards. One way to achieve it is to exempt developers
from repetitive tasks that implement cross-cutting functions. Since the focus is on the business

A Milestone for sustainable Remote Vehicle Capabilities 68

Microservice Utilities

logic, the code has a predictable structure which increases its visibility, and becomes more concise
and easier to understand for the team’s members, as they do not have to bother themselves with
service-“non-essential” piece of code [Bruce and Pereira, 2018]. Best practices are also easier to
implement and organization-specific constraints can be integrated very soon by the developers. On
the other hand, amicroservice chassis also enables easy code reviews bymembers of different teams
[Bruce and Pereira, 2018].

The chassis can evolve to incorporate regularly the knowledge of different teams, allowing to
be always up to date with the organization’s practices and experience. Generally, it is unlikely for
a team to face a challenge that another have not solved before. But, in case it happens, only one
team needs to solve it, and then incorporate the solution into the chassis, which reduces the risks
other teams have to take in the future. Moreover, a microservice chassis reduces the dependencies
management, since it selects a set of libraries to use, and also increases the reliability of the whole
system [Bruce and Pereira, 2018]. In case a library needs to be updated for any reasons, it needs to
be performed only in the chassis.

Figure 5.2: A Service Mesh [Richardson, 2018] collects outputs from and routes traffic
to services using eventually a secure Microservice inter-communication. Therefore,
fewer cross-cutting functions need to be implemented in the Microservice chassis.

Another advantage of a chassis is that it needs to be tested only once. And, new team’s
members can jump into any project quicker once they learned the chassis’ structure shared by all
services within a programming language [Bruce and Pereira, 2018, Richardson, 2018]. However,
a chassis must be defined for each combination platform/programming language. One way to
alleviate this is the use of the so-called service mesh (Figure 5.2). It is a service which mediates
all the communications in and out of each service through a networking layer that implements
the cross-cutting concerns mentioned earlier [Bruce and Pereira, 2018, Richardson, 2018]. It
externalizes some functions of the microservice chassis from services, by handling only the concerns
that are tightly required by all the services such as security configurations, load balancing and service
discovery. The others such as distributed tracing, health checks, and service’smetrics are kept in their
respective microservices. Consequently, the developers’ workload is reduced. Since the requests
routing is handled outside of services, their deployment might be separated from new releases. As

A Milestone for sustainable Remote Vehicle Capabilities 69

Microservice Utilities

example, a new version could be deployed in production, but a release made available to a group
of users [Richardson, 2018]. Some frameworks implementing this concept exist already1, but many
of them are still in development phase though. Now, let us discuss how to design a microservice
chassis.

5.1.3 Design a Microservice Chassis

As discussed in Section 5.1.2, the service discovery is an important part of a microservice chassis.
In some technological stacks, it is fortunately implemented by the infrastructure. For the others,
[Bruce and Pereira, 2018] discussed how to use a message broker to connect two service via the
discoverymechanism. A broker might also be used in an environment where several communication
styles (discussed in Section 3.3.1) are required, in combination or separately. When the synchronous
style is needed, the services might use a communication channel with a reply queue. With the
asynchronous mode, the communication takes place without a reply queue. One another advantage
is that the broker is able to handle the load balancing [Bruce and Pereira, 2018].

Application metrics are statistical data providing an overview on the behavioral performance
and the health of an application and the environment where it is deployed and running. They can be
delivered either:

• in push way, i.e. each service sends its metrics by invoking libraries from the selected stack;

• or in pull way, where an API from the stack aggregates the metrics from services.

Thesemetrics spanmany levels,wherein infrastructure-level provides Central ProcessingUnit (CPU)-,
memory- and disk-utilization, while the application-level includes data such as request latency
and the frequency of requests executed. Metrics are reported to a central metrics service that
aggregates them, provides a user-friendly visualization or reporting, and alert functions. Prometheus
[Prometheus, 2018], Spring Boot [Pivotal, 2018b] or StatsD [Etsy, 2018] are some libraries for
gathering service metrics [Bruce and Pereira, 2018, Richardson, 2018].

A microservice is not immune against runtime errors or exceptions. When it happens,
the team should be notified about with the context in which it happened to identify the
cause. Even if each service produces its own log data, the logging aggregator might also
be configured to throw alerts only in case of (severe) exceptions. However, each service is
responsible for sending its exceptions to the error tracking service, which means this task is a
part of the business logic’s code [Richardson, 2018]. Some exception tracking services available
are Honey Badger [HoneyBadger, 2018], Sentry [Sentry, 2018], Raygun [Raygun, 2018], Rollbar
[Rollbar, 2018], Airbrake [Airbrake, 2018], New Relic [NewRelic, 2018] just to mention a few.

Log data is a valuable tool not only for tracking the actions in a system, but also and especially
for debugging. Since many services might cooperate to respond to a request in a microservice
architecture, the logs of a complete user interaction might span several logging outputs. For a
better tracing of the execution flow in the application, these logs should therefore aggregated in a
consistent way. For this reason, the log aggregation pattern discussed in [Bruce and Pereira, 2018,
Richardson, 2018] should be a part of each chassis. The logging service should allow not only
visualization, but also complex searches in logs and their analysis. Some libraries alloweven grouping
by function name, by host or selecting action that performed longer than a threshold. Logstash
[Elasticsearch, 2018], Fluentd [Fluentd, 2018] and Datadog [Datadog, 2018] are few available logs
aggregation tools.

These functions are just a start of a list of what could be a part of a microservice chassis.
More can be added according to the system’s constraints and organization’s requirements, such as
the circuit breaker. However, developing a chassis around one to three programming languages
tend to enclose the development of future microservices into these languages, even if another
stack might have a better performance for a specific feature [Bruce and Pereira, 2018]. It is

1To name just a few, there are Linkerd [CNCF, 2018b] and Envoy [CNCF, 2018a].

A Milestone for sustainable Remote Vehicle Capabilities 70

Microservice Utilities

then up to the designers to find the right balance between easier, faster bootstrapping and best
performance when it comes to add new services. Moreover, it could be tempting to develop a
chassis as a shared library between services. Although it is simple to perform chassis’ updates in
a centralized way, this approach increases coupling. Therefore, it is recommended to have a little
code redundancies and independent services decoupled than otherwise. On the other hand, using
an existing chassis increases themaintainability, as the teams have acquired a substantial experience
while implementing it.

As any piece of code, microservices must also be rigorously tested. How the distribution of
an application’s business logic through a MOA affects the test procedures is the topic of the next
section.

5.2 Tests in a Microservice Architecture

Many developers and/or testers are still using the traditional approach for software testing, namely
the manual tests. And worse, they perform it at the end of development, which is too late.
For organization-size applications, a recommended approach consist in writing automated tests
alongside the development goes. Developers’ productivity is increased, as they receive qualitative
feedback soon enoughwhile programming [Richardson, 2018]. This takes on evenmore significance
in a MOA, not only because of the independence of teams. It is also crucial to checkwhether services
interact properly while reducing the number of slow, complex and erroneous end-to-end-tests that
span many microservices, specially when the engineers want to deliver reliable software rapidly.
Before discussing in details how tests could be automated for MOA-based applications, the next
section present the testing types.

5.2.1 Classification of testing methods

In a more general sense, a test is the execution of a system’s path to verify its behavior under some
predefined conditions [Richardson, 2018]. In software engineering, the system refers to a program
or a piece of an application. There are many testing frameworks to assist the developers to write
automated tests. For example, a test classwhich uses a testing API ismade up ofmany testmethods,
where eachverifies a specific behaviorof the programbeing tested. An automated test should consist
in four steps [Richardson, 2018]:

• setup brings the system to the initial state required to run the tests;
• exercise performs the test itself by running the program’s path;
• verify checks if the outcome from the previous step and the state match with what it is
expected;

• tear-down cleans up the context by eventually releasing the resources locked during the setup,
or restoring the program state as it was before the test for example.

There are many types of testing, starting from testing methods such as white-box, black-box and
grey-box testing, to techniques such as acceptance, compatibility, functional, usability, security,
robustness and performance [Saleh, 2009, Limaye, 2009] testing just to mention a few. They could
be categorized according to two ways. The test quadrant, discussed by [Richardson, 2018], used a
two-dimension-table to classify the types of tests to perform:

• the first dimension indicate whether the test is business facing, – the test is described with
domain expert terms – or technology facing – the test is described in developer/technical terms;

• the second dimension illustrateswhether the test is to uphold the implementation – this type of
test should be done alongsidewith the programming – or to scrutinize the system as a finished
product, in order to identify improvement potential.

From these dimensions come the following tests categories [Richardson, 2018]:
• support programming/technology facing that contains unit and integration tests;

A Milestone for sustainable Remote Vehicle Capabilities 71

Microservice Utilities

• support programming/business facing, which regroup component and end-to-end test;

• critique application/business facing focused on usability and exploratory testing;

• critique application/technology facing characterized by non-functional acceptance tests, such
as performance tests.

Another classification is the test pyramid illustrated in the Figure 5.3. It is based on tests complexity,
execution time and scope [Richardson, 2018]. At the bottom, unit testing relates to individual classes
and their respective methods. It is simple, performs quickly and spans small application units. At the
top, exploratory testing explores manually the system following the paths that have not taken into
account by the other types of test. It is slow, difficult to execute and untrustworthy because of its
manual execution side. However, it allows developers to learn about the application and improve the
automated tests [Clemson, 2014]. Integration testing checks the communication interfaces between
components. In the microservice architecture, they consist in the verification of the interaction
of services with each others and with those from the infrastructure. Component testing verifies
individual service acceptance, while end-to-end testing covers an entire system’s workflow. These
types of testing are discussed more later in Section 5.3. Follow are the essential steps of testing in a
MOA-based application.

Figure 5.3: The test pyramid [Clemson, 2014, Richardson, 2018]. The higher the layer is,
the scope of the tests is broader and the number of tests that should be written smaller.

5.2.2 Testing procedures of a microservice

Since a servicemight collaboratewith other ones, awaymust be found to simulate this collaboration.
Moreover, it is possible that other teams are still in development phase and are not ready to make
their endpoints available yet. Therefore, starting all of required services only for testing one is not
a practicable solution. There is where stubs and mocks come into play. A stub is an object able
to return values to the service under tests. A mock is an object used by the service under tests to
verify it can call a dependency correctly. With these two types of object, a microservice test can be
performed in an isolated, simpler and faster way [Richardson, 2018].

To test the communication of one servicewith others in isolation, one solution consists in using
the consumer-driven contract testing. This test verifies if the provider’s API match the expectations
of the consumer, or whether the contracts are fulfilled. For ReST APIs, a consumer-driven contract
test checks if the provider supports the expected protocol and path, accepts the expected headers
if any, accepts the request body if any and returns compliant response, status code, headers and
body if any. For message-based APIs, a provider produces an event and checks if it matches
the event’s contract. The test on the consumer side verifies if it can handle the event. In the
publish/subscribe communication model, the provider test publishes a message and checks if it

A Milestone for sustainable Remote Vehicle Capabilities 72

Microservice Utilities

complieswith the contract. On the other side, the tests on the consumer use the contract to generate
and configure a stub subscriber that listens for messages from the providers [Richardson, 2018].
However, these types of testing do not go through the provider’s business logic, since they act
rather asmocks for consumers. Spring Cloud Contract [Pivotal, 2018b] and Pact [Pact, 2018] are two
examples of consumer-driven contract testing libraries, where the latter is compatible with several
languages.

5.3 Guidelines for Microservice testing

Automated tests belong to best practices in software development. In a Microservice architecture,
they are even more important due to the heterogeneous environment. Certainly, the responsibilities
aremore or less clearly bounded, butmust join their forces to deliver a stable and reliable application.
One way to achieve this goal requires executing series of tests, whose categories illustrated in the
Figure 5.3. Let us start with the bottom of the pyramid.

5.3.1 Unit testing of a service

As mentioned before, a more productive approach to test a microservice consists in writing
automated tests. And since the services are independent from each other, a team cannot afford
to wait until the end of the development of services upon which it depends, before running it
own tests, at least for the functional tests. Therefore, each team should be able to perform
unit tests for services they are responsible. That being said, there are two type of unit tests
[Fowler, 2014, Clemson, 2014, Bueno et al., 2018, Richardson, 2018]:

• solitary, where the system under test relies on mock objects for its dependencies;

• sociable, i.e. the system is under black-box test with its required real dependencies.

However, the class’ role within a service might determines which type is the most appropriate. For
instance, controller classes, as well as inbound and outbound messaging gateways should be tested
in a solitary way, since most of their dependencies are generally outside of the services (endpoints
to and from other services are usually implemented in controllers). Value objects, which do not
depend on any other classes, and domain services, i.e. classes implementing the service business
logic, should also be tested through solitary tests. Even if controllers have dependencies to these
type of classes, it is more effective to perform tests of these types of classes independently from
each others. On the other hand, saga and entity classes should be tested as sociable test cases
[Richardson, 2018]. Fortunately, there are many mocking frameworks available to help building
unit tests. Some are Spring Mock MVC [Pivotal, 2018b], Mockito [Faber et al., 2018], Rest Assured
[Haleby, 2018], WireMock [Akehurst, 2018] just to mention a few2.

5.3.2 Integration testing of a service

After unit testing, integration testing is the next step which checks whether a microservice can well
cooperate with components outside of its boundaries. Instead of running its real dependencies,
one approach consists in testing the adapters that the service uses to communicate with external
components. An example might be tests of an event handler in a publish/subscribe interaction style,
where it verifies if events are published to and received from the right channel correctly. Another
approach is contract-based, where the contracts between services are tested instead of the services
themselves [Richardson, 2018]. For instance, a HTTP-based contract might be tested by verifying if
the returned status code and the response are as expected, in both positive and negative cases. The
API’s contracts are used to generate mocks and stubs with the help of mocking frameworks. One
benefit of the contract-based tests is that they allowto checkwhether the consumer and the provider

2Concrete examples are discussed in chapters 9 & 10 in [Richardson, 2018].

A Milestone for sustainable Remote Vehicle Capabilities 73

Microservice Utilities

consent on the communication interface. Since such tests take into account both sides, they might
be classified into two groups [Richardson, 2018]:

• consumer-side testing uses the contracts to configure the stubs to simulate the provider;
• provider-side testing verifies the adapter through the contract with consumer-based mocks.

A further step towards service integration testing with the persistence tiers consists in testing its
repository adapter. The testing method instantiate the necessary entities and pass them to the
repository adapter. To validate the test, the methods checks at the end whether the changes really
happened on the persistence layer by comparingwhat it retrieves from the databasewith the entities
it gave before as parameter to the adapter [Richardson, 2018]. After testing the service’s correctness
and its ability to communicate with others, how it behaves while cooperating with others must also
be proved through component testing procedures.

5.3.3 Component testing of a service

Acceptance tests are is a variant of black-box test to analyze the component’s behavior by submitting
input data and tracking output values and eventual logging files via its APIs. To apply it in a
microservice architecture, it requires to perform end-to-end tests, which are slow and expensive
[Richardson, 2018]. One more convenient approach to test the behavior of a service consists in
running component testing on it, i.e. to check its outputs and log files in isolation. In such a case,
its dependencies are stubbed and infrastructure services might be used in their in-memory versions.
Therefore, this type of tests becomes easier to implement and runs quicker [Richardson, 2018].

Since this type of tests verifies how a component reacts to external inputs from an external
point of view, the tests scenarios could be based on user stories that involve the component under
test. Consequently, testers should identify the participating uses cases to cover all possible execution
paths within the component. After that, [Richardson, 2018] proposed the following steps to write
component tests of a service:
1. translate the user story involved into pseudo-code in understandable plain text;
2. translate this pseudo-code into Domain-Specific Language (DSL)3-compatible scenarios,

including best cases such as successful terminations, and alternatives such as failures and
compensation routines when something wrong happens;

3. use a DSL tool to generate executables from the previous scenarios and testing frameworks4

to automate the tests.
Nevertheless, there are two subgroups of component testing [Richardson, 2018]:

• in-process, where mocks replace all dependencies and stubs are used instead of required
services or as their in-memory variants;

• out-of-process, where reals infrastructure services andmessage brokers are used, but the other
dependencies are still mocked as discussed in Section 5.3.2.

5.3.4 End-to-end testing of a service

After testing each microservice separately, developers must verify if the whole application meets
the requirements, behaves as expected and fulfill the goal for which it was designed. This might
be achieved with end-to-end testing that consists in executing use cases from the requirements
and running user’s workflow through the entire system. However, since such tests do not allow
neither mocks nor stubs, and require to set up all the required dependencies of the services, they
are slow and expensive. Therefore, they should be kept as minimal as possible [Bueno et al., 2018,
Richardson, 2018]. For instance, to execute a user story, a smart design should integrate all
alternatives cases within one test, instead of a separate test for each possible path relative to this
story. [Bueno et al., 2018] even subdivided this type of testing in two subgroups:

3An example of a DSL might be Gherkin [Hellesøy et al., 2018b].
4One could be Cucumber [Hellesøy et al., 2018a], which uses Gherkin.

A Milestone for sustainable Remote Vehicle Capabilities 74

Microservice Utilities

• vertical testing verifies the worflow from the user’s input through the services eventually till
down to the persistence tiers;

• horizontal testing checks the transitions between views of the (web) user interfaces triggered
by results from services.

Fortunately, there are end-to-end testing frameworks5 to automate this category of tests
[Bueno et al., 2018]. They might require to write test scenarios similarly to that described in
Section 5.3.3 to generate the executables.

5.4 Summary of the chapter

In this chapter we discussed tools and utilities to fulfill non-functional requirements in a distributed
system. Wedescribed howto design the integration of these tools in amicroservice application. They
might bring additional efforts for developers to integrate them in the solution, but we discuss why
it is worthwhile to make use of such tools. We also presented testing procedures and guidelines in a
MOA which take into account the characteristics of a microservice discussed in Section 3.1.3. In the
next chapter we discuss the possible datastore technologies that could be used for the persistence
tiers in our software architecture.

5Arquillian [JBoss, 2018] and JMeter [Apache, 2018b] are some examples.

A Milestone for sustainable Remote Vehicle Capabilities 75

Chapter 6

Databases and Data Schemas

What we find changes who we become.

– Peter Morville

Since the early stage of the computer science, programs and applications needed a mechanism to
store data. The role of a persistence tier depend on the application’s objectives and the purposes
of its design. It starts from keeping data for consistent transitions between application’s states,
for logging, for subsequent data analysis, for data sharing, for building a knowledge basis just to
mention a few. And, to retrieve data is as crucial as to store it. To tackle these challenges, the fields
data structures and algorithmic were born and developed amongst others in the computer science
discipline.

On a higher level, to ease the software development, data structures and algorithms were
combined to made up the so called databases. The concept of data structures in this context
refers to how raw data is store on disk or memory, not to be confused neither with data schema
– which describes in a formal language how data are organized – nor with data model, which is an
abstract representation of data using some standards to capture relationships between elements
[Walsh et al., 2017, West, 2010]. This separation of concerns allows designers and experts to
make the complicated more accessible when presenting the system to others. As we illustrated
how important these terms are in software engineering in general, after the some definitions, we
discuss database-related thematic issues, since they have an significant impact on the overall system
performance.

6.1 DBMS and Data Architecture Pattern

A database is an organized collection of data, usually stored in and accessed from a computer
system. A DBMS is the software that interacts with users and other applications to store in,
to modify, to extract and analyze the data from the database [Connolly and Begg, 2015]. These
core functionalities might be extended with others such as the management of transactions and
concurrency, the database recovery after a failure, the import and export of data, the monitoring or
the remote access just to name a few. It might also implement some security policies to control
the access to the database. A transaction is defined an atomic unit of task within a database engine
[Connolly and Begg, 2015]. Until otherwise specified, the terms database, DBMS, database engine
and database system are designating the same concept, namely a collection of data and the software
that handles the access to it.

According to the data structure or pattern selected, the performance is impacted, since the
time (and space) complexity depends strongly on how data is organized. In the dictionary, a pattern
is stated as a regular and intelligible form or sequence discernible in the way in which something
happens or is done. Its definition in architecture derives from the previous, as it captures architectural
design ideas as archetypal and reusable descriptions. It as a similar structure seen before and

A Milestone for sustainable Remote Vehicle Capabilities 76

Databases and Data Schemas

recognized in a new problem. In the database context, a data architecture pattern is a way to
design data and to represent it in a regular structure that will be stored in persistent and/or volatile
memory [McCreary and Kelly, 2013]. There is also a broad high-level data architecture patternwhich
identifies howdata is stored in a system,while a narrow low-level data pattern describes interactions
with the data. As example, Figure 6.1 illustrates the high-level row-store data pattern in RDBMSs,
versus the low-level patterns such as join-statements, transactions, authorizations at the bottom
[McCreary and Kelly, 2013].

Figure 6.1: High-level versus low-level data architecture pattern. For one high-level
pattern, many low-level patterns might be used for its implementation

[McCreary and Kelly, 2013].

After discussing a fundamental aspect underneath of data management systems, wewill have
a look how it is used and implemented in the different categories of DBMSs, the advantages and
limitations of each philosophy, and above all, the scenarios in which each is suitable. Let us start
with the oldest and the most know one, namely the relational ideology.

6.2 Relational DBMSs

DBMSs were born from the limitations of traditional file-based storage approach
[Connolly and Begg, 2015]. Relational management systems were highly influenced by the
Codd’s work on the relational model of data [Codd, 1970]. In this model, the data is logically
structured as set of normalized relations also called tables. Each table has a name and is described
by attributes or columns. A table is a set of uniform objects called rows. Each row of a table –
also called a tuple – consists of data fields whereby each is associated with a column name and
a single data type. That is why RDBMSs are classified in the row-store pattern-based family. As
big advantage, the relational model has a simple logical structure which is easy to understand by
non-experts [Connolly and Begg, 2015, Brooks, 2014]. Since rows might be added and deleted as
atomic units, some databases use columns as an atomic unit of storage. They are distinguished
as column-store systems and are used for aggregate operations (counts, sums, etc.) in reporting
features [McCreary and Kelly, 2013]. They are not to be confused with column family store, which is
used in Bigtable systems discussed in Section 6.4.3.

The normalization just mentioned, consists in performing a series of transformations on a
database design until it meets desirable properties given the data requirements of an organization.
The normalization aims to identify a set of relations that support the requirements such as the
minimal number of necessary attributes, the minimal redundancy and the logical closeness of
attributes in the same table [Connolly and Begg, 2015, Codd, 1970]. Each of these properties
describes one normal form. There are many normal forms, from the 1NF (1st Normal Form), 2NF,

A Milestone for sustainable Remote Vehicle Capabilities 77

Databases and Data Schemas

3NF, 4NF, up to the BCNF (Boyce-Codd Normal Form). Depending on the data, the first three normal
forms may be sufficient [Connolly and Begg, 2015, Brooks, 2014].

6.2.1 Query and Data Languages

After the specifications of the relational model, a language is needed to allow users to create the
database, the relations, to perform the basic and complex data management operations with as
minimal effort as possible and relatively easy to learn. Moreover, the language must be portable
between DBMSs, since one of the fundamental purposes of the relational model is the data sharing
between organizations, which was extremely problematic with the traditional file-based storage
systems. It is under there requirements that the StructuredQuery Language (SQL)was designed and
adopted as a standard under the ISO/IEC 9075 parts [ISO, 2016b], which has twomain functionalities
[Connolly and Begg, 2015]:

• a Data Definition Language (DDL) to describe the database structure and the access controls;
• a Data Manipulation Language (DML) for retrieving and editing the data.

Data manipulation queries are used to display data from the database. On one hand, during the
design of the database schema, data might be spread across many tables due to the normalization
process [Connolly and Begg, 2015] or other constraints. Although simple queries involve only one
table, there are many cases requiring to combine data from two or more relations. To fulfill
such requirements, join operations are needed to build pairs of related tuples. A join-statement
consists in using a row identifier in a column of one table to reference a corresponding row in
another table. Join-statements can also be performed between views [Connolly and Begg, 2015,
McCreary and Kelly, 2013].

6.2.2 Working principle of RDBMSs

When inserting values in a RDBMS, the involved table(s) must be specified. These tables might be
related to each others. Therefore, such relationships must also be captured somehow during the
insertion of values. To tackle such issue, [McCreary and Kelly, 2013] proposed a list of steps to follow
when using such datastores:

• the team of database designers discuss with the users to understand their heartfelt needs.
Then, they model the business data to identify the data types, the redundancies and the
grouping operation needed. This will result to a database schema with the necessary tables,
columns and relationships;

• the tables are created with a DDL, whereby columns’ names are unique per table and single
data type per column. This must be done before the first tuple can be inserted. Indexes might
also be created for some columns in tables with large data sets to optimize the data search
time. For the sake of maintainability, tables’ semantics should be documented in a dictionary;

• new data can be added with SQL (bulk) Insert-statements with eventual references to seize
relationships between rows and/or tables by using foreign keys, inheritance, etc. SQL
Update-statements might also be used here to edit one or a set of specific tuples identified
by search criteria;

• upon request, the generation of reports with Join-statements can take place to build logical
business documents;

• eventually, the designers might define a set of rules – stored procedures, functions, triggers,
constraints – to enhance the data consistency. These routines are automatically called in the
database engine when specific events occur.

6.2.3 Handling data with Transactions

To guarantee the database integrity, relational datastores use transactions while reading andwriting
data. A transaction is an operation or series of operations, treated as a logical unit of work that

A Milestone for sustainable Remote Vehicle Capabilities 78

Databases and Data Schemas

manipulates the database contents [Connolly and Begg, 2015]. RDBMSs use ACID properties to
control and insure that transactions are reliable. These properties are defined as follow [Date, 2015,
Fowler, 2015, Chandra, 2015, Connolly and Begg, 2015, McCreary and Kelly, 2013]:

• Atomicity, from the Greek term meaning undividable, describes an indivisible and irreducible
operation or series of operations such that either all occur, or nothing is executed. To support
atomic transactions, systems must take into account all failure modes such as disk crashes,
hardware, network and power failures, and even simple software errors;

• Consistency ensures that a transaction moves the database from one valid state to another
valid state, without necessarily preserving consistency at all intermediate points. By this way,
any transaction changes the involved data only as allowed by the database rules. Any data
manipulated must remain valid after the transaction completion according to all defined rules,
constraints and any combination of them;

• Isolation guarantees that the database is moved into the same state after completion of
concurrent transactions as if theyhave been performed sequentially. In orderwords, all updates
made by concurrent transactions are concealed from each other until the modifications are
committed;

• Durability ensures the transaction’s updates are persistent in the database once all of its
aspects are completed and committed, even if a subsequent crash happens. In the case of a
system crash, it must restore the database from a backup, andmake sure that the transaction’s
record is also restored.

RDBMSs are around formore than 50years. During this time, they evolved andwere improved. These
enhancements provide several benefits that help organizations solving business problems.

6.2.4 Advantages of the row-store pattern

Through its decades of experience, the relational datamanagement approach has several advantages
that made it successful in businesses [McCreary and Kelly, 2013, Codd, 1970] till today:

• it uses a paradigmwith strongmathematical basiswhich is based on proved relational algebra;

• it is suitable for OnLine Transaction Processing (OLTP) and business intelligence operations;

• the transactions are sets of simple operations and are clearly defined with Begin and End
Transaction points;

• ACID transactions at the database level ease the application development;

• the views from different relations can be generated with join-statements;

• data access control policies can be configured by row and column through views and
Grant-statements; the possibility to specify fine-grained security on columns and rows using
views prevents unwanted changes by unauthorized users;

• thanks to its design requirements, most SQL code is portable to other SQL compatible DBMSs,
including open source engines;

• the (primary) data types of columns, the rules and the constraints validate data before it is
inserted to the database, which increases the data quality;

• the existing staff members are already familiar with the entity-relational design and SQL.

6.2.5 Limitations of the row-store pattern

Although their numerous benefits, RDBMSs have also shortcomings. Some of the most significant
are [Connolly and Begg, 2015, Brooks, 2014, McCreary and Kelly, 2013]:

• the transactions slow the applications due to additional operations to ensure data consistence;

• the transactionsmight be slowed because ofeventual locks on resources during their execution,
depending on their isolation level;

A Milestone for sustainable Remote Vehicle Capabilities 79

Databases and Data Schemas

• join-statements are one of the most resource-intensive operations to perform and difficult to
scale across several processors;

• the complex data types such as those from geographical, network or multimedia data are
difficult to manage and work with;

• as a consequence, generating reports is arduouswhen it involves such complex data types;

• they offer poor representations of real-world entities like composite objects, making the
object-relational mapping layer complex. Such entities should be splited into many relations
through the normalization process. Therefore, join-statements might be mandatory for
querying;

• they lack of semantic features: the meanings of relationships between tables cannot be
distinguish from each other. For instance, the relations “Person A owns a Car B” and “Person A
commentedaTopic C in a forum” can be capture onlywith a relationbetween the corresponding
tables;

• the SQL embeds an impedance mismatch, i.e. it combines several programming paradigms:
a declarative language for the data definition, and a procedural language for its manipulation.
Moreover, some data types must be converted from SQL into those from the 3rd generation
and vice-versa;

• database schemas are very rigid: when changes happens that imply modifications of the
relations structure, only database experts are able to useAlter-statements to adjust the schema
and applications that access to it must also be adapted accordingly. Such adjustments are
time- and money-consuming.

On datastore engines with a single centralized node, transactions are easier to handle than with
distributed DBMSs. However, at a some point, a single system is not able to manage the
growing amount of data. In this vein, some approaches to increase the scalability in databases in
general.

6.2.6 Scalability in RDBMSs

Scalability issues are not limited only to relational databases. In 2013, statistics published that 2.5
millions of terabytes were created daily worldwide [Jacobson, 2013]. Predictions even states that
it will grow up to 463 millions of terabytes daily by 2025 [Raconteur, 2019]. At some point, the
capacity of a single node database is exceeded. To minimize the system downtime, datastores
make the use of an approach called sharding which consists in splitting data into small chunks
– the shards – and distributed amongst several nodes or clusters. In some relational DBMSs,
this procedure is still manual, which might imply the system to be down till the sharding is
completed [McCreary and Kelly, 2013]. However, as discussed in Section 6.3.2, this process is
performed automatically in NoSQL datastores. How and under which splitting criteria the sharding
is implemented is at each vendor’s discretion.

Figure 6.2: Replication and mirroring. Applications read and write into the master node
and any change is replicated in the slaves nodes. By a master failure, one slave node
takes it over to minimize the overall system downtime [McCreary and Kelly, 2013].

A Milestone for sustainable Remote Vehicle Capabilities 80

Databases and Data Schemas

The sharding mechanism is not to be confused with replication. System managers use
replication to increase data availability and speed up reading operations by allowing them to
be performed by slave instances. It might be an approach to solve the issues related to the
high-availability of systems. As illustrated in the Figure 6.2, when one of the master node has a
downtime, one or more slaves can replace it during its maintenance [McCreary and Kelly, 2013]. On
the other hand, the sharding intends to store each piece of data on a separate node and does not
duplicate information. Moreover, the sharding enables read and write operations to be distributed
acrossmany systems, which increases system performance. However, that does not increase system
availability. Usually, the replication does not increase the performance of data-edit-queries in a
database, butmight increase its availability. As bottom line, replication and sharding are independent
mechanisms and can be combined in appropriate circumstances [McCreary and Kelly, 2013].

The strengths of the relational ideologywas build over decades. We discussed how itwas born,
developed and the factors of its wide adoption amongst organizations till today. Then followed its
advantages, where RDBMSs are suitable and also some points that should be developed further. In
the next section, we discuss another philosophy of data store, its foundations, benefits and how it
differentiates itself from the previous way of thinking.

6.3 NoSQL DBMSs

Due to scalability issues from the relational model discussed in Section 6.2.5, and the needs of
the web 2.0 to gather more and more data, non-relational databases started to be designed and
developed since more than a decade ago. However, the term NoSQL was mentioned long time
before. The first signification is completely different from how it is used nowadays, as it was still
used to describe a relational database without a SQL interface [Strozzi, 1998]. In this section, we
start with some definitions related to the NoSQL movement, which approaches such DBMSs use to
tackle the issues above, inwhich cases theymight be not the best solution to use, their characteristics
and a general comparison between the two models.

6.3.1 Definitions and Properties of NoSQL DBMS

From here onwards, we will use the term NoSQL to refer data management systems different from
well-known traditional relational ones. The termNoSQL encapsulates a set of concepts allowing the
rapid and efficient processing of datasets through an enginewith performance, reliability, and agility
as a priority [McCreary and Kelly, 2013]. The NoSQL movement does not aim to exclude neither
the SQL nor the relational ideology from its inception. Rather, NoSQL datastores are beyond the
“simple” characteristics of the relational model. For instances, there are several categories of NoSQL
datastores whose some still support the tuple data pattern.

Due to the powerwall1 phenomenon, to increase processors speedwas not an option anymore.
Therefore, the systems engineers moved their focus from increasing speed on a single chip to
using more processors working together. The need to scale out – horizontal scaling –, rather
than scale up – vertical scaling, i.e. faster processors –, shifted designers from serial to parallel
processing [McCreary and Kelly, 2013]. As mentioned before, relational models were designed to be
single-processor, while many NoSQL DBMSs support multiple processors by default and maintain
high-speed performance [McCreary and Kelly, 2013]. NoSQL datastores make a better use of linear
scaling, i.e. using large number of common processors in a parallel way, instead of vertical scaling
as RDBMSs do, i.e. faster processors.

NoSQL systems are known for overcoming issues such as volume, velocity, variability, and
agility. In addition, they keep things simple, i.e. they are made up of simple and reusable functions,

1With the increasing chip density, at some point the heat generated due to the exponentially increasing power
consumption cannot longer be dissipated fast enoughwithout chip overheating [McCreary and Kelly, 2013, Roscoe, 2012].

A Milestone for sustainable Remote Vehicle Capabilities 81

Databases and Data Schemas

whereby each performs very well [McCreary and Kelly, 2013]. The volume and velocity refer to the
ability to quickly handle large amount of data that arrives – through parallelization for instance. The
variability refers to the ability to handle diverse data types that do not fit into structured tables, since
rigid data schemas often impose to keep rows with empty values where information is not needed
or does not exists, or even to perform an Alter Table-statement after a shutdown, and then a restart.
The agility refers to how quickly a system responds to business change(s).

6.3.2 Characteristics of NoSQL datastores

Such datastores distinguish themselves from traditional relational model with their philosophy
and properties. Although each category has its own characteristics due to their respective data
pattern, many of NoSQL systems have some common ones, namely [Chandra, 2015, Fowler, 2015,
McCreary and Kelly, 2013]:

• they are schemaless, i.e. they do not need tables, typed columns, primary and foreign key
relationships before ingesting data. Such datastores are more flexible and more adaptable
to change than their relational counterparts. The relational model requires a strict schema
describing the relations and attributes with types. Each of these attributes must be atomic and
has a domain of definition, which might have constraints such as Not Null or Unique;

• they implement the shared-nothing architecturewhere each processor has access only its own
local Random-Access Memory (RAM) and storage (Figure 6.3c). This enables faster accesses
to disks than those involving network data round-trips. In terms of cost per processor, this
architecture is cost effective. However, since graph datastores are not cache-friendly, an
alternative might be to implement a share-memory architecture, i.e. several processes can
access a RAM large enough so that the graph data does not have to be swapped from outside
the shared memory during graph operations;

• they support a high level of elasticity, i.e. they allow a dynamic expandability (resp.
contractability) of the database they have ingested. When the distribution topology changes
– a new node is added to (resp. removed from) the network –, a fraction of the database is
replicated – expansion – in new nodes (resp. adjusted – contraction) in remaining nodes;

• they make use of sharding, which consists in partitioning data in chunks called shards, which
are small enough to be handled by a single node, similarly as discussed in Section 6.2.6 with
RDBMSs. Shards might be replicated within a cluster and splited when it becomes too large
(Figure 6.4). According to the system requirements, one of the many types of data sharding
can be implemented;

• they implement the asynchronous replication2: in contrary to the synchronous replication
technique such as the “mirroring”, NoSQL datastores use the asynchronous replication, which
allows write queries to be completed faster and smoother as they are independent of the
network traffic. However, this replication technique may lost data in a certain timeframe, since
the data is not immediately replicated;

• their persistence model is BASE unlike the ACID paradigm in the relational model as NoSQL
systems focus on Availability and Performance. They are designed to be cost effective with
fast response times by minimizing the amount of resources needed. To build a distributed
datastore providing ACID properties is difficult. Thus, the Consistency and Isolation properties
are often ditched to use the BASE mechanism. One of the main challenges behind BASE is that
the developers must themselves handle the data consistency without relying on the datastore
engine.

2A replica is a node with a single copy of data. A replica set is a fully self-healing shard of many replicas which helps to
prevent database downtime and to scale read operations. At any time, one replica acts as the primary node and the others
as secondary. If the primary node fails, one of the secondary nodes is automatically selected to be the next primary and
begins to process all writes [MongoDB, 2018].

A Milestone for sustainable Remote Vehicle Capabilities 82

Databases and Data Schemas

From these common characteristics and properties, NoSQL DBMSs bring many advantages with
them, as some are discussed in the next section.

(a) Shared RAM (b) Shared disk (c) Shared-nothing

Figure 6.3: Shared RAM vs. shared disk vs shared-nothing architectures
[McCreary and Kelly, 2013]. The first is suitable for traversal operations on graphs. In

the second, each CPU has its own memory for rapid operations and uses a SAN for large
data through a LAN. The third is implemented by most NoSQL datastores making a

better use of commodity hardware.

Figure 6.4: Data sharding. Queries are received by the router and then are dispatched to
the corresponding shard for processing.

6.3.3 NoSQL strengths

In addition to their characteristics mentioned in Section 6.3.2, NoSQL datastores carry with them
many benefits in contrast to the relational-based data model. The main are [Fowler, 2015,
McCreary and Kelly, 2013]:

• test data can loaded with drag-and-drop tools before finishing the entity-relationship design;
• they implement amodular architecturemaking their components to be exchanged if necessary;
• they are linear scalable, and that can be automated as new nodes are added to a cluster;
• due to their distributed nature, the auto-sharding reduces the operational costs;

A Milestone for sustainable Remote Vehicle Capabilities 83

Databases and Data Schemas

• queries code is executed near the data: thanks to their distributed architecture and linear
scalability, ingest and query workloads can be divided and parallelized across several servers
for optimized execution time;

• they embed data search functions which provide quality ranked search results;

• no object-relationalmapping tier is required for applications to interact with them;

• their flexibility allow them to store highly variable data easier, such as unstructured text;

• they are able to ingest data “as-is” due to their schemaless property, which reduces Extract,
Transform and Load (ETL) costs, since less code needs to be produced.

6.3.4 NoSQL limitations

NoSQL DBMSs are not a silver bullet to the data persistence problems in organizations. They also
have drawbacks, few of them follow [Fowler, 2015, McCreary and Kelly, 2013]:

• ACID transactions are guaranteed onlywithin a single document3 at the database engine level4.
Transactions that involve many shards must be handled at the application level;

• document datastores do not allow fine-grained security configurations at the element level as
the relational model provides to do;

• although NoSQL systems are around since already more than a decade, their learning curve
might be steep for many developers staff members and further training may be necessary;

• they usually have a poor portability, as many of NoSQL data management systems have their
proprietary and non-standard query language;

• the reporting and OnLine Analytical Processing (OLAP) tools as know today are not compatible
with document datastores; they need external third-parties add-ons to interface with queries
on the documents.

6.3.5 Optimizations at the low-level

Besides optimizations techniques at the software level – high level – which involves many other
scientific disciplines, there are alsomechanisms to speed up performance at the hardware level – low
level. Amongst others, one way consists in a development of low latency storage memories. In this
vein, the 3D XPoint5 technologywas developed jointly by Intel [Intel, 2019] and Micron Technology
[Micron, 2019] to optimize access by the processor to datasets as large as that from the disk with
speeds close to that from traditional volatile RAMs [Hady et al., 2017, Intel, 2015]. Memorymodules
based on this technology are inherently fast, byte-addressable and might be used as a non-volatile
RAM [Graham, 2017].

On the other hand, another approach is the strategic use of system memories. One solution
consists in keeping the right data in RAMs as possible, and check the local nodes whether they also
have a copy of such data. This local data storage is called a memory cache. However, to determine
which data and when it is not relevant anymore for current usage – cache management policies –
is another challenging task [McCreary and Kelly, 2013]. Manymemory caches are timestamp-based,
i.e. the blocks in the cache are sorted by time. When the cache fills up, the timestamp is used to select
themost recently used data to keep in thememory cache and the oldest should be overwritten.

Another approach takes into account howmuch timeor resources are necessary to re-create the
requested dataset and to store it in the memory cache. With this cost-based mechanism, the more
expensive a query is, the longer its result set should be kept in the RAM [McCreary and Kelly, 2013].

3Document-oriented databases such as MongoDB are ACID at the document level [MongoDB, 2018, MongoDB, 2017].
4Some NoSQL software engines in their newest releases are ACID-compliant [MongoDB, 2017, Fowler, 2015]. For

instance, from its version 4.0, MongoDB supports multi-document transactions [MongoDB, 2017].
5It is a non-volatile memory technology available under the brand names Optane at Intel [Intel, 2019] and QuantX at

Micron [Micron, 2019].

A Milestone for sustainable Remote Vehicle Capabilities 84

Databases and Data Schemas

An effective use of the memory cache is guided on the efficient answer to “Did this query was
executed before?” or “Did this data was used before?”. Answers to these questions can be provided
by using the consistent hashing, which determines whether a piece of data is already in the memory
cache or need to be reloaded from a slower storage module [McCreary and Kelly, 2013] as discussed
in the following section.

6.3.6 Consistent hashing

The cache management policies have a significant impact on a software performance in general.
One approach used by NoSQL DBMSs is the consistent hashing. It allows to know rapidly whether
a query or document is new or already in the cache. A hash function is a sequence of steps that
produces a series of alphanumeric letters from an object or a document [McCreary and Kelly, 2013].
This series as result is a hash string (sometimes confused with the checksum6). The hash uniquely7

identifies an object and can be used to check it against one another. If they are different even
with a single byte, the resulting hash will be totally different. Consistent hashing is also used
for synchronizing distributed databases and versioning systems [McCreary and Kelly, 2013]. Many
standardized hashing algorithms exist since the 1990s. Some are MD5, MD6, SHA-1, SHA-256,
SHA-512, BLAKE-256, BLAKE-512, RIPEMD-160 and theWhirlpool to name a few.

6.3.7 Data consistency in NoSQL systems

No matter the system used to store data, it must allow data consistency and availability. In case of
it is distributed, it must also provide partition tolerance. In this vein, [Brewer, 2000] conjectured the
CAP theorem8which enumerates the properties to balance between in a DBMS. Those properties are
[Fowler, 2015, McCreary and Kelly, 2013, Brewer, 2000]:

• Consistency which relates whether a DBMS is fully ACID compliant or what the consistency
guarantees are. Multiple readings of the same data from replicated partitions should return
consistent results;

• Availability discusses if the database is still able to reply to requests after been partitioned.
Communication losses between replicas should not involve operational downtime;

• network Partitions tolerance, i.e. the system is still running correctlywhen the communication
between partitions is broken, and the database corrects itself when the network is recovered.

Relational model-based datastores ensure strong consistency [Fowler, 2015]. Due to the
Consistency, Availability and Partition (CAP) trade-off, they can only satisfy either CA (Consistency
and Availability) or CP (Consistency and Partition tolerance). On the other side, as discussed
in Section 6.3.1, NoSQL databases aim to provide high data availability, as they are natively
distributed and linear scalable. Consequently, they handle transactions with the alternative
to ACID, namely the BASE model, which is defined as follow [Chandra, 2015, Fowler, 2015,
McCreary and Kelly, 2013]:

• Basic Availability enables systems to be temporarily unavailable so that transactions can be
processed. In such systems, the data and services may not be available 24/7 – basically
available;

• Soft-state property acknowledges that some inconsistencies are temporarily possible. Even
without an external trigger, data may changewhile being requested. They are faster and easier
to write, as they do not need locks on (expensive) resources;

6A checksum is a suite of digits derived from a digital object to detect errors that may have occurred during its
transmission or storage. Usually, checksums are used to check data integrity but not for verifying data authenticity.

7Mathematically speaking, there is an infinitesimally small chance that two different input objects could generate the
same hash, resulting in a hash collision. The longer the hash, the lower the likelihood of a collision.

8The Consistency, Availability and Partition (CAP) theorem was proved in [Gilbert and Lynch, 2002]

A Milestone for sustainable Remote Vehicle Capabilities 85

Databases and Data Schemas

• Eventual consistency refers to the (short) period of time during which the system is in a
inconsistent state after all business logic is performed, to allow the changes to be propagated
and applied. The whole system will eventually become consistent later.

BASE systems are not pessimistic as they do not worry about the details if one replica does not
have all the changes yet. They rather are optimistic as they assume that all systems will eventually
become consistent based on replication settings [McCreary and Kelly, 2013]. They satisfy either
AP (Availability and Partition tolerance) or CA (Consistency and Availability). Different paradigms
imply differences in architectural design. The two data management philosophies discussed up to
here distinguish themselveswith significant divergences in their functional architecture respectively.
Designers and developersmust be aware of these beforemaking the choice for the persistencemodel
to use.

6.3.8 Architectural Comparison

In Software Engineering, when an application needs to handle persistent data, it requires a
persistence tier somehow. According to the software architecture pattern used, this tier might be
made up of:

• one layer, whereby the application or the business logic interact directly with a DBMS;
• two ormore layerswith a middle tier between the application and the DBMS.

Usually, the middle tier is responsible for preliminary tasks before sending the bunch of data to the
storage engine. These preliminary tasks include the object-relational mapping, the query parsing, or
value-added services such as MapReduce and full-text operations.

Howthese functions are distributed depends stronglyon the datastore used to persist data. The
Figure 6.5 illustrates the comparison between the two philosophies of data persistence. Relational
data storage engines just need relational-objects mapping to ingest from and deliver data to
applications. These engines natively support important functions such as transaction management,
data search features, batch queries and triggers amongst others. On the other side, most of these
functions are not part of NoSQL storage software engines. There are moved to the middle tier, or
even left at developers discretion. However, such storage offer gateways for more useful services
such as MapReduce and full-text search functions or traversal operations.

Figure 6.5: Relational versus NoSQL DBMSs [McCreary and Kelly, 2013]. In RDBMSs,
many functions are performed by the storage engine itself. In contrast to NoSQL
DBMSs, some of the nonfunctional requirements are handled in the middle tier and

offer gateways to more services.

A Milestone for sustainable Remote Vehicle Capabilities 86

Databases and Data Schemas

6.3.9 Comparison summary

We discussed on one side the relational model from its inception, its characteristics and the
language used, the norms and standards regulating its existence and growth over several decades.
On the other, we presented the challenges the NoSQL movement must face. Starting from its
attributes, we went through its benefits, how its instances could be optimized till how they tackle
the most important issues in DBMSs and how they are functionally structured. All these aspects are
summarized in the Table 6.1

Relational model NoSQL paradigm

Strong mathematical basis
Foundation

(relational algebra)
None scientifically proved yet

Norms &
Standards

ISO/IEC 9075 + Normal Forms None widely adopted yet

SQL
Language SQL

+ proprietary languages
Rigid schema Schemaless

Data structure
(tuples + typed columns) (Structured and Unstructured data)

Transactions
management

ACID BASE*

Nonfunctional Can be configured in the engine Must be handled in the application
requirements (vendor-specific) (business logic-specific)

Vertical Horizontal/Linear
Scalability

(limited by the hosting node) (limited by the number of nodes)
More Replicated than distributed More Distributed than replicated

Data repartition
(master+ slaves) (shards)

Difficult to represent Suitable to capture
Real-world data

(rigid data types) (flexible data types)
Resource-intensive/slow Lightweight/fast

Queries
(join-statements) (parallelized, ranked results)

Functions
Middle tier Object-relational mapping

+ value-added services
High Low

Portability
(normalized language) (proprietary languages)

Data Access Fine-grained Coarse-grained
Control (views) (entity/document-level)

* Some NoSQL DBMSs are already ACID-compliant [Fowler, 2015].

Table 6.1: Main differences between Relational and NoSQL DBMSs.

6.4 Categories of NoSQL DBMSs

Many years ago, the development of NoSQL datastores has been leaded by organizations for
reliability at massive scale [Chang et al., 2008, DeCandia et al., 2007]. These pioneers have had a
significant influence on several NoSQL databases used till nowadays. Others have been shaped
from existing databases to match web technologies needs. Still others based themselves on
different mechanisms. In the light of the variety of these philosophies and numerous overlappings
between the nonfunctional requirements, there have been various approaches to classify such types

A Milestone for sustainable Remote Vehicle Capabilities 87

Databases and Data Schemas

of databases in categories and subcategories. One of these based its comparison on the DBMS
intrinsic data model. According to which data architecture pattern is used, it distinguishes four
main classes of NoSQL database management systems [Fowler, 2015, McCreary and Kelly, 2013,
Chandra, 2015]:

• key-value datastores, which are a set of pairs, where each unique named key matches one or
more large Binary Large OBjects (BLOBs) of data called values. Thewhole set of key-value pairs
is also referred to as a dictionary, a map, or an associative array. Such datastores do not have a
query language and provide functions to add into and remove key-value pairs from them;

• column family datastores, also called Bigtable datastores, are just giant tables, made up of
rows and columns. The row and column identifiers are used as key as usual to retrieve data.
However, such datastores lack typed columns, secondary indexes, triggers and query languages
as known in RDBMSs. Moreover, the rows do neither have to contain the same type of columns
nor the same length – they are not homogeneous;

• document datastores, where the data are made up of collections of JSON, XML or other
document types. They can be retrieved in their entirety or queried through an appropriate
query language such as XML Path Language (XPath) or XML Query Language (XQuery) for XML
contents;

• graph datastores, which are from a different data management philosophy. They consists
of nodes and edges, similarly to a network of interlinked objects. A query language is usually
provided by each instance of this type of datastore. It allows to enter the graph at some specific
node and to perform traversal and other operations from graph theory.

The first three are also classified as aggregate-orientedwhile the last one is non-aggregate-oriented
[Neo4j, 2019, Chandra, 2015]. The former class describes DBMS that group data in “disconnected”
aggregates according to a particular criteria. When a relationship is needed, an aggregate’s identifier
is incorporated into an extra field of another aggregate, similarly to the concept of foreign key in
RDBMSs. Then, the joining operation must be handled at the application level. On the other hand,
graph datastores can natively capture fine-grained interrelated aggregates, providing a broader
overview on the ingested data [Neo4j, 2019].

Others approaches extended these categories with more fine-grained taxomonies such as
eventually-consistent key-value datastores, ordered-key-value datastores and tuple datastores
[Strauch and Kriha, 2011] just to name a few. Some authors went even further by classifying and
comparing NoSQL datastores by nonfunctional categories, and included the relational model, as
illustrated in the Table 6.2. In the next sections, we discuss in more details the four principal
categories mentioned above, their respective strengths and drawbacks.

DBMS type Performance Scalability Flexibility Complexity* Functionality

Relational Variable Variable Low Moderate Relational algebra
Key-value High High High None Minimal
Graph Variable Variable High High Graph theory
Column family High High Moderate Low Minimal
Document High High (variable) High Low Low (variable)
* Operational complexity.

Table 6.2: Comparison of DBMSs by functionalities [Strauch and Kriha, 2011].

6.4.1 Key-value datastores

In a key-value persistence store, the database associates a string known as the key with a large
BLOB of data known as the value. Such DBMSs do not have a particular query language, as

A Milestone for sustainable Remote Vehicle Capabilities 88

Databases and Data Schemas

they provide basic operations to add, read and delete key-value pairs into/from the database
[McCreary and Kelly, 2013] (an update operation could be seen as the succession of a deletion of
a key-value pair and an addition of the new value with the same key as before). They work similarly
as a dictionary. When the keys are indexed in the database, the retrieval of values is very fast, with
an (amortized) time complexity of O(1) [Cormen et al., 2009].

One benefit of this type of DBMSs is that the data type for the value in the pair must not
be specified beforehand. By this way, any data type can be stored in the value and the type
will be determined at runtime. Another benefit is the ability to adjust precision service levels
[McCreary and Kelly, 2013]. For instance, the database administrator is able to specify on-the-fly
howmany resources are allowed to be used to provide a certain service guarantees level. In addition,
due to the simplicity of such datastores, designers and developers can focus more on load tests and
service levels monitoring. This simplicity also increases the portability of the information system and
lowers its operational costs. However, indexes on values are not allowed [Fowler, 2015].

6.4.2 Graph datastores

A graph datastore, also called graph-oriented DBMS, is a sequence of nodes linked by relationships
to build a graph. Such datastores keep data either as a node or as a relationship. Each of them is
allowed to contain properties and are built around a node-relationship-node data structure. They
are suitable for analyzing (complex) relationships between objects or visiting all nodes in a graph.
They are optimized to efficiently store nodes and links, and to query them. They are used in areas
such as social networking, rules-based engines and graph systems to analyze network structures and
to quickly detect patterns [McCreary and Kelly, 2013]. As their name suggest, such DBMSs support
operations of the graph theory like the node’s neighborhood, the shortest path between two nodes,
the similarity of any given two nodes, graph traversal operations and many more other complex
metrics.

Differences between Graph datastores and Triple stores

In the literature, graph DBMSs are often designated as triple stores, although there is a difference
between the two. A triple store handles independent assertions, which describe either a subject’s
property, the subject’s type or the relationship between subjects (Figure 6.6). The data structure
in this case is subject-predicate-object. Each assertion uses a particular vocabulary, also called
ontology. A graph datastore is therefore a triple store, seen as a set of dependent assertions or
connected ontologies. But, a triple store is not necessary a graph datastore [Fowler, 2015]. A triple
store answers queries such as “Who is the student that wrote the dissertation xyz?”, while a graph
datastore is able to respond to a more complex query involving many relationships such as “Who
are the classmates of the student who wrote the dissertation xyz?”. Graph algorithms have higher
complexity (time and space) than those of triple stores. The former are also mathematically harder
to perform and to return results, as they are related to graph theory. Also, due to complex math
required to split a graph, many of such DBMSs use (asynchronous) replication instead of sharding for
high data availability and disaster recovery [Fowler, 2015].

Figure 6.6: The data model of a triple store [Fowler, 2015, McCreary and Kelly, 2013]. A
graph is made up of many assertions eventually connected to each other.

A Milestone for sustainable Remote Vehicle Capabilities 89

Databases and Data Schemas

Advantages of graph datastores

Graph DBMSs have many advantages. First, their join-statements are computationally lightweight
and fast in comparison to those of RDBMSs. Additionally, they do not just deliver relationship
as a response to a query. They also give details (like the type, weight, etc.) about the
relationships involved in the result set, thanks to the Resource Description Framework (RDF)
specification9, which is very suitable for semantic web. They enable to perform join-statements
between heterogeneous datasets through an integration technique called linked open data for new
perspectives [McCreary and Kelly, 2013].

Thanks to the assertion data model, graph datastores also allow to perform inference
operations. Inferencing consists in extrapolate assertions from a set of other assertions. One
example of inference are the product recommendations on an e-commerce website, based on
previous purchases [Fowler, 2015]. Another is friends recommendation in social networks, based
on acquaintances list. Pattern detection is also an application of graph’s links analysis, for cluster
detection (social influencers, center of interests) or for criminal investigations (insider trading,
fraud) amongst others. Some instances of graph DBMSs support even indexes on nodes and their
properties, and reusable functions. However, graph DBMSs are difficult to scale out on multiple
servers because of the relatedness of nodes [Fowler, 2015, McCreary and Kelly, 2013].

6.4.3 Column family datastores

Column family data pattern, also called Bigtable can scale to handle large volumes of data. They
are also close to MapReduce systems. The MapReduce is a programming model for processing big
data sets with a parallel distributed algorithm executed on a cluster of machines (also called nodes)
[McCreary and Kelly, 2013, Dean and Ghemawat, 2004]. This model manages communication and
data transfers between the involved nodes of the system and provides redundancy and resilience.
In a MapReduce system, the map operation consists in a master node dividing an operation into
sub-operations and distributing each one to another node for processing, while the reduce is the
process where the master node collects the results from the others and combines them into the
answer to the original problem [Fowler, 2015, McCreary and Kelly, 2013].

This type of DBMSs is not to be confusedwith the column store. A column store database keeps
its data within a column of a table at the same location similarly as the row-store pattern does. In
a Bigtable, like a spreadsheet, data can be inserted into any cell at any time. In this vein, each value
can only be found by the combination of the row and column identifiers. This combination, called the
key, might be extended with the timestamp or the column family (upper level ontology). Contrary
to RDBMSs, all the row’s columns do not have to be filled with a value. For this reason, this type of
DBMSs is sometimes called as sparse, distributedmulti-dimensional sortedmap [Chang et al., 2006].
RDBMSs are not efficient for storing sparse data, while column datastores are designed exactly for
such purposes [Fowler, 2015, McCreary and Kelly, 2013].

Column family DBMSs usually store data in distinct nodes in possibly different geographic
areas to ensure high availability. They have an embedded automatic failover to detect failing nodes
and algorithms to identify corrupt data. They exploit advanced hashing and indexing tools such
as Bloom filters10 to perform probabilistic analysis on large data sets. The larger the dataset, the
better these tools perform [Fowler, 2015, McCreary and Kelly, 2013]. Moreover, they do not rely on
join-statements to reply to a query,which increases their scalability. Theydenormalize the equivalent
data schema to speed up retrieve queries’ response time. In addition, due to their distributed nature,
and the use of efficient communication between the nodes, the availability is also increased. This
family of DBMSs is also able to ingest data in a parallel manner. Neighboring keys are stored near

9The RDF is one of the World Wide Web Consortium (W3C) recommendations designed as a model for metadata for
the semantic web. More at [Cyganiak et al., 2014, McCreary and Kelly, 2013].

10Designed by Burton H. Bloom, a bloom filter is a space-efficient probabilistic data structure used to test whether an
element is a member of a set. More at [Bloom, 1970].

A Milestone for sustainable Remote Vehicle Capabilities 90

Databases and Data Schemas

each other while nonadjacent ones are spreaded in multiples nodes [Fowler, 2015]. Despite the
flexibility of the datamodel of this type ofDBMSs as a NoSQL type, the column families names should
be selected beforehand. Also, column family datastores could not be suitable for small datasets, as
they are designed for distributed systems of nodeswith at least three different clusters for replication
[Fowler, 2015].

6.4.4 Document datastores

A document datastore, or document-oriented DBMS, is a type of database designed for storing,
retrieving and managing document-oriented information, also known as semi-structured data.
A document can encapsulate and encode data in some standard encoding, which include a
non-exhaustive list of XML, YAML Ain’t Markup Language (YAML)11, JSON, Binary JSON (BSON)12, as
well as binary-based encodings. Document datastores provide additional metadata to be associated
with and stored along with the document’s content. That metadata enables to organize documents,
to provide security or other specific features [Fowler, 2015].

Data sharding

To ensure high-speed reads, some document-oriented DBMSs use the memcaching system. This
system provides a lightweight binary protocol and avoids the interaction over the network with a
database layer that must round-trip with a disk for data. Using binary formats could also save a
lot of disk space without impacting too much on performance overhead [Fowler, 2015]. Another
optimization of this type of database engine is the distribution of data amongst several servers,which
improves the speed of writing queries. However, the reading requests are negatively impacted, as
they might be processed by many servers. One trade-off solution is the sharding as discussed in
Section 6.3.2. This process consists in an even distribution of data within a cluster of servers. Shards
can be configured at runtime, dynamically or with a fixed number of partitions beforehand. The
sharding procedure can be [Fowler, 2015, MongoDB, 2018]:

• key-based whereby a range of documents’ keys are assigned to a single server. By this way,
given a key, a client know exactly which server to interact with. An implementation example
is the range-based sharding, whereby documents are assigned to a shard when their keys are
within its range;

• automatic: in this case, the database engine assigns a document to a server randomly. Here, a
client does not have to bother with a key-based server selection. It just has to send its queries
to the master node, which will then select the corresponding cluster to handle the request.
An extension of this approach consists in using hash values to distribute documents uniformly
amongst the shards;

• location-based, i.e. uses specific configurations that assign key ranges to a specific shard.
These configurations could be based on the shard’s geographic location or on the type of
storage to use, such as in-memory- or disk-based.

Extraction of metadata

One difficulty with these type of DBMS is the ingestion of unstructured data. Such data does not
provide description of objects it relates to, unlike the XML and JSON-based documents. For this
reason, unstructured datamust be usually pre-processed to extract usefulmetadata by external tools
before its ingestion into the database. The benefit of this extraction upstream it a shorter response
time to query. The search of an element through its metadata is faster and more accurate than a
look up into a bunch of disorganized data. Some of these external tools add even more information
to the object to describe (data enrichment) based on well-known references [Fowler, 2015].

11YAML is a human-friendly data serialization standard for all programming languages. See [Evans and Ingerson, 2001].
12BSON is a binary-encoded serialization of JSON-like documents. More at [Commons, 2019].

A Milestone for sustainable Remote Vehicle Capabilities 91

Databases and Data Schemas

Evaluation of document datastores

Even with their respective benefits, Bigtable and key-value datastores previously discussed have
limitations. First, values must not have a formal structure, as they are typically BLOBs. Furthermore,
they could neither be indexed nor content-search-able. Document datastores do not suffer from
these, since they allow documents to be search by content or value. In addition, the document’s
content is indexedwhen a newone is added. A document DBMS is able to quickly extract subsections
of a large number of documents without loading each of them into memory [Fowler, 2015].
However, document DBMSs guarantee the ACID properties at the document-sized request, i.e. only
within a document. They can not ensure transactional changes across many entities.

Data consolidation

In some cases, a reply to a request require data from across multiple documents. To provide a
meaningful response to a query necessitates to combine together data from multiple incoming
streams. Unlike with RDBMSs, with exception of few, document datastores do not support
join-operations at query time. It is up to the developer to consolidate these streams into a relevant
response within the application’s logic. To speed up this data consolidation, the developer might
use the metadata extracted as discussed a short while ago [Fowler, 2015]. Another way consists in
looking for keywords in document’s content, eventually based on indexes built beforehand. After this
processing, the results should be then user-friendly delivered. They might be store somewhere else
(denormalization) if they are frequently requested. By this way, the developer reduce the number of
necessary round trips while collecting information from many data streams, similarly to the concept
ofviews in RDBMSs. However, howto denormalize strongly depends on the application purposes and
users expectations. Moreover, this time-saving trick requires more space. Therefore, this trade-off
should be application-specific.

6.4.5 Some examples of uses of NoSQL DBMSs

More than 10 years ago, the NoSQL philosophy was born to solve issues from the relational model
as well as to meet the needs of organizations to handle large datasets and make the best use of
commodity hardware. The concepts behind this movement were developed slowly by independent
work groups since. They used those ideas and applied them to solve their own data problems.
Consequently, many NoSQL datastores instances were implemented. There are several attempts
to classified these and we discussed in Section 6.4 one of the classifications by data pattern. After
a detailed discussion on each category, the Table 6.3 illustrates a non-exhaustive list of their typical
application areas.

6.4.6 NoSQL DBMSs bottom line

NoSQL solutions are not aimed to fully replace legacy RDBMS. They are to be used cooperatively,
to solve problems that RDBMSs cannot. The scalability of NoSQL systems makes them suitable
to transform large amounts of data used in data warehouse applications. Moreover, their nature
and approach enable the frictionless integration of business documents directly into the analytical
reporting and search functions [McCreary and Kelly, 2013]. To speed up query time, NoSQL
datastores use the denormalization concept. It consists in merging information to provide effective
result sets, despite it requires more space. By this way, the queries do not have to perform
join-intensive commands to deliver the expected results [Fowler, 2015].

A Milestone for sustainable Remote Vehicle Capabilities 92

Databases and Data Schemas

Data pattern Description Usage

Key-value
Simplest NoSQL pattern to
pinpoint large data objects
(values) with strings (keys).

Mostly used as a dictionary, for quick access
to images, documents or files, for querying a
cache or as look-up tables.

Document

Allows to capture data in
a hierarchical tree-structured
and flexible pattern in a single
unit.

Used where data is hierarchical structured
such as sales orders, office documents and
web pages inter alia. This pattern is
suitable for document publishing, document
exchange and powerful fordocument search.

Column family
To store data as a sparse
matrix with row and column
identifiers as keys.

Suitable for web crawling, large sparsely
populated tables and systems with high
variance.

Graph
For storing graphs and
networks of nodes and edges.

Appropriate for relationship-based queries,
network queries, inference, recommendation
engines and pattern matching.

Table 6.3: Descriptions and examples of typical uses of NoSQLs data architecture
patterns [Fowler, 2015, Chandra, 2015, McCreary and Kelly, 2013].

6.5 XML datastores

6.5.1 Compatibilitywith many types of documents

In some cases, a document might contain various types of content, from plain text to primary data
types, through facts, URLs, pictures and much more. Unfortunately, document-oriented DBMSs do
not support queries on suchmixed contentswithin a document. Native XMLDBMSs are an alternative
to solve this limitation. They support queries on a broader range of content types, structured and
unstructured documents, than any other NoSQL datastores [McCreary and Kelly, 2013]. Moreover,
XML datastores support many security models and standardized languages, resulting in their
increased portability between XML platforms. XML datastores also implement document data
architecture pattern, as they are a sub-type of document-oriented databases. Therefore, the
formers inherit of the latters’ benefits, namely the non-use of an entity-relational mapping, nor the
middle-tier, nor join-based operations to reply to a query [McCreary and Kelly, 2013].

6.5.2 Use of Standards & Triggers

The use of standards help to minimize development costs, as it avoids the implementation of
proprietary query languages. For instance, XML DBMSs organize documents in a collection hierarchy,
analogous to the file system structure. As folders might contain files and other folders, a
collection can also encapsulates documents and other collections. In addition, the query language’s
simplicity13 of XML DBMSs enables non-programmers to build and customize reports from result
sets [McCreary and Kelly, 2013]. There are plenty of tools for such purposes, compatible with the
most used operating systems, namely macOS, Windows and Unix-based distributions. Similarly
to RDBMSs, native XML datastores support database triggers. Triggers are stored functions (or
procedures) that are automatically called by the engine when an event occurs on a document or
elsewhere within the database [McCreary and Kelly, 2013]. They are used for routines such as the
data validation, the integrity check, the launch of a backup procedure or for logging, just to mention
a few.

13XML datastores do not keep data in XML literally, but in a compressed version instead.

A Milestone for sustainable Remote Vehicle Capabilities 93

Databases and Data Schemas

6.5.3 Flexibility and Security policies

Another advantage of XML databases is how flexible they are with the data structure of documents
to ingest. Whether they import a single file with thousands of entries or the same thousand entries
individually, they perform equally. Additionally, the query does not have to be changed in both
cases, as long as the root collection is well referenced. Moreover, the collection hierarchy allows
to group documents according to users’ access permissions. The security policies of some XML
database engines are users’ groups-based like in Unix systems, while others implement the most
robust policy, namely the Role-Based Access Control (RBAC) [McCreary and Kelly, 2013]. Likewise,
as in the XML ecosystem, XML DBMSs embeds tools such as XPath (for sub-trees extraction from XML
documents), XQuery (to queryXMLdocuments), XML Schema (forXMLdocuments validation) and XSL
Transformations (XSLT) (tools for XML documents transformation from one format to another such
as HTML, plain text or XSL Formatting Objects (XSL-FO)). Therefore, when the team is accustomed
with these concepts, it does not require lot of effort to interact with a native XML datastore.

6.5.4 XQuery

To navigate to a specific element of an XMLdocument, an XPath query expression is used. Its syntax is
very similar to expressions to reach a specific folder or file in a file system [McCreary and Kelly, 2013].
For example, the query

doc("diss.xml")/chapter[6]/section[5]/xquery

will return the Section 6.5.4. If necessary, there are tools that return the corresponding XPath
expression when the element is graphically selected. XQuery is an expression-oriented, side
effect-free14, functional language to query and manipulate sets of structured and unstructured
XML-compliant data source, and which can be extended to support other data formats
[McCreary and Kelly, 2013, Kilpeläinen, 2012]. It uses XPath and is able to be executed in a parallel
way on different CPUs, thanks to the For, Let, Where, Order by, Return (FLWOR) expressions. As
results of this processing, XQuery can return a XML document as well as tables, JSON-based items
and any tree-based data structure like graphs, just to name a few. This makes useless the use of a
middle-tier for the object-relational mapping and the object-HTML conversion, as discussed a short
while ago.

Efficient document update through XQuery

During the ingestion of documents by native XML DBMSs, indexes are built on elements as they are
loaded into the engine. That means, during updates of a document, the indexes are also rebuilt.
This re-indexation operation is resource-expensive, specially on large XML documents with big full
text elements to re-index [McCreary and Kelly, 2013]. Fortunately, in 2011with [Robie et al., 2011],
the W3C published a recommendation to update the XML document’s elements without necessary
update the whole associated indexes. The update operations are triggered with the following basic
expressions [McCreary and Kelly, 2013, Robie et al., 2011]:

• insert for inserting a new element or attribute; some derivative operations are insertBefore,
insertAfter, insertIntoAsFirst;

• delete to delete an element or an attribute from a document;
• replace for replacing an element or an attribute with a new value; it is used by the operations
replaceNode, replaceValue and replaceElementContent;

• rename to edit the name of an element or an attribute;
• transform for changing an element’s format without modifying the underlying structure on
disk; setToUntyped is an example of operation related to this expression.

14A function has a side effect if it changes some non-local environment state values [Spuler and Sajeev, 1994].

A Milestone for sustainable Remote Vehicle Capabilities 94

Databases and Data Schemas

An example of an update in a conditional statement is illustrated in the code snippet of
Algorithm 6.5.1. First, let bounds the node representing the Section 6.5.4 to the variable $p. Then,
the condition checks if the attribute lastUpdated already exists. If it is the case, the code updates its
value with the current date; otherwise, the code creates the attribute with the current date as value.

Algorithm6.5.1An example of a document update. Thismodifies the last update time of this section
in this document if the corresponding attribute exists. Otherwise, it creates the attribute.

let $p := doc("diss.xml")/chapter[6]/section[5]/xquery/document_update
if ($p/@lastUpdated)
then replace value of node

$p/lastUpdated with fn:currentDate()
else insert node

attribute lastUpdated {fn:currentDate()} into $p

Full-text search capabilities

The W3C also published a recommendation for full-text search in [Case et al., 2011]. It is an
extension module of XQuery and XPath languages made up of XQuery-based functionswith boolean
and powerful semantic operations. This is a very important feature in XML systems that handle
documents with considerable amount of text-based content. Such systems must often deliver
high-quality result sets to text searches into the document’s contents. For instance, the use of the
boolean operator ftand (full text and) in a query such as

let $sec := doc("diss.xml")//section/title contains text "xml" ftand "datastores"
return $sec

on this document returns the Section 6.5 as its title contains the two words. Wildcards and regular
expressions are also allowed. The expression

doc("diss.xml")//subsection contains text "operat." using wildcards

will return true on this document on more than one section. The next example illustrates the
powerfulness or a nearness operation. An expression similar to

doc("diss.xml")//subsection/title contains text "flexible" using stemming

on this document returns true, since the Section 6.5.3’s title contains the word "flexibility"
which shares the same stem15 with "flexible". An extensive list of many more powerful text
search capabilities is available at [Case et al., 2011]. Speaking of flexibility, XQuery is flexible
enough to be extended with custom functions or existing libraries developed by other organizations
[McCreary and Kelly, 2013].

6.5.5 Data validation in XML DBMSs

As discussed in Section 6.3.2, NoSQL DBMSs are schema-free. Since they are a type of
document-oriented databases, XML datastores also have this property. However, there is a
distinction to make with XML schemas. The concept schemaless of NoSQL databases refers to the
lack the necessity to define a complete entity-relational model beforehand to be able to send data
to the DBMS for ingestion (hence the eventual consistency state). Database schemas are designed to
ensure data integrity – and eventually consistence – regarding the whole system’s database. These

15The stem of awordmust be defined beforehand based on a dictionary or a semantic field. More at [Case et al., 2011].

A Milestone for sustainable Remote Vehicle Capabilities 95

Databases and Data Schemas

schemas might be enforced by a set of rules in RDBMSs engines to guarantee transitions between
consistent states. For this reason, an object-relational model must be well-defined before ingestion
in RDBMSs, otherwise the engine will reject the data sent.

The XML itself supports natively the design and the validation of XML files through schemas
whose the W3C published recommendations in [Thompson et al., 2004, Biron and Malhotra, 2004].
Therefore, XML datastores allow these functionalities – as an option – on each document during its
ingestion and its entire life cycle in the database engine. Though they are schemaless, XML allow the
data integrity check at the document level. It is up to the developer to ensure this integrity at the
database level in the system’s business logic.

Another tool for XML validation is schematron. While XML schemas and Document Type
Definitions (DTDs) are data types and constraints-based validation tools, schematron is a validation
language based on rules expressed in XML and using XPath [ISO, 2016a]. It allows the specification
of constraints that cannot be expressed with schema languages, such as relationships between XML
files, customized error messages, or co-occurrence of constraints [Fennell, 2014]. An example is
illustrated by the snippet in the Figure 6.7. It stipulates that an atom feed must have a title with the
<iso:assert /> rule. Then, it prints it in a textual output.

<iso:rule context="/atom:feed">
<iso:assert test="atom:title">

atom:title is missing,
this is a required element.

</iso:assert>
<iso:report test="atom:title">

The '<iso:value-of select="atom:id/text()"/>'
feed has '<iso:value-of select="atom:title/text()"/>' as title

</iso:report>
</iso:rule>

Figure 6.7: A fragment of validation rules in schematron [Fennell, 2014]. It verifies the
integrity of a feed, whereby <iso:assert /> ensures the title exists before printing it.

6.6 Optimizations in NoSQL DBMSs

One of the big challenges in the NoSQL world is the ability to scale alongside with the data
growth. Therefore, many of this type of DBMS implement some techniques for linear scaling. Those
approaches can be sharpened in vendor-specific configurations (high-level optimizations).

6.6.1 Moving queries to data

As mentioned above, most NoSQL datastores are based on a distributed architecture with many
shared-nothing-nodes or many shared-nothing-clusters [McCreary and Kelly, 2013]. These clusters
can be geographically far away from each other. To perform queries involving more than one node
means that large data sets might be moved across the network, sometimes frequently, to built the
final result set at the end. This technique of query execution is called moving data to the query.
One optimization approach consists inmoving query to data, that means sending to nodes only the
part of the query related to the data they hold [McCreary and Kelly, 2013]. By this way, only the data
required for the result sets will be moved over the network during the assembling phase. However,
this technique requires two pre-conditions. First, the NoSQL engine must have a master node able
to split the query into parts and map each of them to the corresponding node or cluster, and to put

A Milestone for sustainable Remote Vehicle Capabilities 96

Databases and Data Schemas

the sub-result sets together into the final response. And secondly, data must be smartly distributed
amongst the nodes to make the parallel execution of queries worthwhile.

6.6.2 Hash rings

But how to distribute data amongst nodes? Which key-value tuple should be store in which
node? Answers to such questions are not so straightforward. One solution suggests to use a hash
ring-based approach with randomly generated key to evenly distribute data across the network
[McCreary and Kelly, 2013, MongoDB, 2018]. Then, a key range of value to store is defined for each
node. Consequently, the map of a (set of) key(s) to a node must be recorded somewhere. But,
it is not excluded for a value to be stored in more than one node, to comply with the replication
concept. By this way, even if a node fails, a copy of the value can be used in the meantime
[McCreary and Kelly, 2013]. The drawback of this approach occurswhen a node is added or removed.
In such cases, the map key-node must also be updated and this might also imply a copy or a move
of value between nodes.

6.6.3 Replication

One strategy borrowed from RDBMSs, namely the replication can be extended to scale reads in
NoSQL datastores [McCreary and Kelly, 2013]. It consists in dedicating replica nodes for reading
requests, while the master node can still handle all type of queries. However, according to its
workload, it can redirect a reading request to a replica node. It should be mentioned that, when
an incoming request writes/updates some values and another tries to read the same records
immediately after from a different replica node before the replication update occurs, then an
inconsistent read happens [McCreary and Kelly, 2013]. The time between the write/update in the
master node and the time the update is completed on the replica node, called the replication lag,
is the minimum duration to wait between a write/update and a read of the same records to avoid
inconsistent result sets [Kleppmann, 2017] as illustrated in the Figure 6.8. Therefore, to solve this
issue, oneway consists in allowing reads only on the samewrite/update node during a certain period
of time, and redirect the next reading requests to replica nodes afterwardwhen the replication is fully
completed.

Figure 6.8: Improving NoSQL performance with replication. Reading requests are
redirected to replicas to improve data availability [McCreary and Kelly, 2013]. The time
for an automatic replication to complete is the replication lag [Kleppmann, 2017].

A Milestone for sustainable Remote Vehicle Capabilities 97

Databases and Data Schemas

6.6.4 Federated Search

Similar to the concept ofmove queries to data, the federated search distributes a single query across
distinct servers and then assembles the results in a single response, giving the impression that the
query was executed on a single node [McCreary and Kelly, 2013]. In this approach, to move the
query to the data, the split of the query and the merge of responses from all nodes is the unique
responsibility of the datastore engine and not the application layer. The steps of this technique are
as follows. First, the query lands at query analyzer nodes. Then, these nodes split it and forward the
parts to each node. After, the request will wait until all nodes – or replicas – have a response to the
original query. If one node is down, the query can be redirected to a replica of the node (Figure 6.9).
In contrast to the technique discussed in Section 6.6.3, each single cluster is also able to perform
write/update operations in addition to the reads [McCreary and Kelly, 2013].

Figure 6.9: Improving NoSQL performance with federated search. Incoming requests
are (evenly) distributed amongst nodes and results are combined to build the result set.

If a node fails, the involved query’s part is redirected to a replica
[McCreary and Kelly, 2013].

6.7 Data Security

Protection of data is a crucial aspect in systems. Security policies are implemented at the application
level as well as at the database level. In the relational model, as discussed in Section 6.2.4, this
nonfunctional requirement can be fine-grained configured at theDBMSengine level. Moreover, OLAP
tools allow to set rules for cell-level report protection. However, since NoSQL datastores focused
on scalability and availability, they left the data protection policies to the application designers
discretion. For this reason, it is important to discuss how data can be protected from unauthorized
access through some security models. First, let us start with some basics.

6.7.1 Security requirements

Data security is not unique to databases, even less for NoSQL DBMSs. Every system whereby data
must be protected fromunauthorized access should implements some basics in information security.
These include authentication, authorization, audit and encryption procedures.

Authentication

As one of preliminaries in security, the authentication consists in verifying and validating the identity
of a subject. The subject can be a person, a device or a program. In web-based communication,

A Milestone for sustainable Remote Vehicle Capabilities 98

Databases and Data Schemas

this happens usually by using HTTP headers. In large systems, this task is dedicated to an internal
centralized service – a Single Sign-On (SSO) – for user’s credentials validation. An alternative is the use
of a directory access API, commonly implemented as a Lightweight Directory Access Protocol (LDAP)
server. Fortunately, many NoSQL datastores are already supporting interactions with a directory
access service [Fowler, 2015, McCreary and Kelly, 2013]. There are several types of authentication,
where few are:

• the basic access authentication where the subject provides the combination of a username
and a password. These credentials should always be sent through TLS or SSL standards, as the
credentials are encoded with the reversible Base64 function before transmitting;

• the digest access authentication uses the MD5 hash function to transmit the username and
password. This type of authentication requires more handshakes between the subject and the
object, whereby a nonce is generated by the object and used in the hash function;

• the key authentication is the process of authenticating the keys between two sides, assuring
that the one side’s key held by the other side actually belongs to the first side and vice versa.
There is the shared keys authenticationwhere the two sides use a symmetric key, and the public
key authentication, which is based on the asymmetric cryptography;

• the multi-factor authentication method combines the strengths of several factors while
avoiding their respective weaknesses. The object grants access to a subject only after it
successfully presented two or more pieces of evidence – the factors. A factor can be a
knowledge (known only by the subject), a possession (owned only by the subject) or an
inherence (been only by the subject) [Scheidt and Domangue, 2006];

• the Kerberos protocol authentication uses tickets, the symmetric key cryptography and
a network of trusted third-parties to establish a secure communication between nodes
over a non-secure network. This protocol allows a mutual authentication between two
sides and protects the exchanged messages against eavesdropping and replay attacks
[Zhu and Tung, 2006];

• the Simple Authentication and Security Layer (SASL) specifies a series of challenges and
responses to be used to grant or revoke access to a subject. It decouples authentication
mechanisms from the underlying application protocol [Melnikov and Zeilenga, 1997].

After a subject is authenticated, the next step consists in verifying and/or granting some privileges
in the system. This step is called authorization and is discussed next.

Authorization

After subject’s identity verification,what it is allowed to performedwithin the systemmust be loaded
or granted if necessary. The authorization is a process in which complex, enterprise-wide data
access control policies are applied. It might have a negative impact on the system performancewhile
processing queries if it is not implemented carefully, or if the security granularity is poorly designed
[McCreary and Kelly, 2013]. This is a matter of tradeoff, since themore coarse is the security, the less
the system performance is impacted.

Typically, each incoming query contains one subject identifier16. This identifier is used to
retrieve information about the sender and to find its associated role(s) and/or permissions. These
verifications are performed on each requested data before a result set is delivered. For example, if
the policies are column-grained in a Bigtable datastore, the security checks will be performed for
each column on each rows involved in the query. This adds the algorithmic complexity of the query
execution up to O(nm) in the worst case scenario, whereby the Bigtable has n rows and up to m
columns. However, if the data access control is row-grained, the previous complexity is reduced
down to O(n).

16Some systems make also the use of user sessions to handle roles and permissions.

A Milestone for sustainable Remote Vehicle Capabilities 99

Databases and Data Schemas

Audit

To know who did what, how and when is an important aspect for data security as well as for
traceability and internal/external investigations in organizations. Onewayto ensure such information
is permanently available consists in configuring the right level of the system logging.

In a more general sense, an audit is a systematic and independent examination of accounts,
statutory records and activity documents of an organization to determine how far the statements as
well as disclosures illustrate a true and fair viewof the concern. Most of the time, this definition refers
to the financial statement audit. An information technology audit, also called information systems
audit, is an inspection of the management controls within an information system to determine if
it safeguards assets, ensures and maintains data integrity, and operates efficiently to serve the
goals and objectives of an organization. A data audit is an examination of data for profiling and
evaluating the impact of its poor quality on the system performance. This audit can be extended to
the verification of the transparency and the validity of the data sources. As a tool, an audit can detect
fraud, intrusions, and other security problems within a system (references!!!).

The audit is usually based on the logs produced by an application. These logs are either
produced by the business logic with the help of a third-party libraries17. When the application
itself does not produce logs, triggers can be used at the database level to produce relevant logging
information for data audit [McCreary and Kelly, 2013]. This information might contain subject roles
activities, last subject log-ins, failed logins attempts, password reset requests, deletion requests,
search and backup activities just to mention a few. As bottom line, the logging procedure and its
granularity must be adjusted to the security policies of the organization and the purpose of the
system, at the application- as well as the datastore-level.

Encryption

The features above addressed the security of data access. But, data should also be protected during
its storage and transmission to ensure the validity and authenticity. Here comes the encryption
in play. The encryption is the process of encoding a content such that only authorized subjects
can access it and those which are not authorized cannot. This process can be performed at the
database- as well as the application-level. Fortunately, many NoSQL datastores support data
encryption in their engines [MongoDB, 2019, McCreary and Kelly, 2013]. The encryption is similar
to the hash function discussed previously, whereby certificates are used in addition to keys. When
this is support at the application level, this implies that each application accessing to the data must
implement it. This decreases the system maintainability as it decentralizes the storage of keys and
certificates. However, at the datastore level, it allows to have a centralized control for data access
control and encryption policies [McCreary and Kelly, 2013].

The use of a digital signature18 is another approach to protect the validity of a content.
It is a mathematics-based set of algorithms to check the authenticity of a digital content. By
employing asymmetric cryptography, the digital signature authenticates that the content is from
the sender and ensures that it has not been altered during its transmission till to the recipient
[Padilla, 2019, NCCIC, 2009]. Since a signature is mathematically linked to the content it was
made with, the verification will fail for practically any other content, no matter how similar it is to
the original one. Some digital signature algorithms are Rivest-Shamir-Adleman (RSA)-based, the
Digital Signature Algorithm (DSA), its variants, and the ElGamal signature scheme to name just a
few19.

17Many programming languages are compatible with a plenty of mature logging libraries.
18It should not be confused with the electronic signature, or e-signature for short. While digital signatures are a type

of e-signature, not all e-signatures are digital signatures. An e-signature is any sound, symbol, or process showing the
intent to sign an object. It could be a scan of a hand-written signature, a stamp, a typed name on the signature line of a
document or a record of a verbal confirmation [NCCIC, 2009].

19More at [Menezes et al., 2001]

A Milestone for sustainable Remote Vehicle Capabilities 100

Databases and Data Schemas

After these preliminaries on data security, we discuss now the most used data access control
policies, which are different implementations of the authorization. Let us start with the the
role-based one.

6.7.2 RBAC

One way consists in the use of the Role-Based Access Control (RBAC). It grants privileges to roles
rather than directly to users, for actions on a particular piece of data [Ferraiolo and Kuhn, 1992]
This access control policy can be implemented with the concentric ring model as illustrated
in the Figure 6.10. It is a series of concentric rings as walls around the data to protect
[McCreary and Kelly, 2013]. The outermost ring is made up of users with public access. A more
restrictive access might be the organization’s internal employees with intranet access. There might
be a subset of users within that group with special access that requires credentials. And then, there
might be data that requires specific users with special privileges, such as system administrators. To
such users are granted all rights within the system. This security model is easy to maintain, as when
a user permissions change. It also enables inheritance, and combination of roles for specific users or
group of users [Fowler, 2015,McCreary and Kelly, 2013]. But thisworks speciallywellwhenviews on
data are defined beforehand. When it is not the case, the system designer must specify the security
levels on each piece of (raw) data.

Figure 6.10: Concentric rings security model. The more the users are outside, the less
restrictive is their access [McCreary and Kelly, 2013].

6.7.3 LBAC

As another access control policy, we discuss the Lattice-BasedAccess Control (LBAC), also known as
label-based access control or rule-based access control. Formally defined in 1976, this mechanism
is a complex access control model based on the interaction between any combination of objects –
resources, computers andapplications – and subjects – individuals, groupsororganizations – through
security classes or “security clearances” [Sandhu, 1993, Denning, 1976]. This type access control
model uses a lattice to specify the security levels that an object may have and that a subject may
have access to. A subject is only allowed to access to an object if its security level is greater than
or equal to that of that object. This approach is suitable for security in the relational model, thanks
to the concept of views. The object in such a case might be a table, a tuple, a column or even a
relational view. Then, on the other side, the subjects would be the database user accounts and the
security clearances would be the privileges granted to each separately through Grant-statements.
Although this level of granularity is challenging in NoSQL DBMSs, it could be implemented at the
document- and node-level in document and graph datastores respectively.

A Milestone for sustainable Remote Vehicle Capabilities 101

Databases and Data Schemas

6.7.4 ABAC

One another approach consists in defining access control based on information contained in the
data rather than to specify the permissions separately from records and assigning to them. These
definitions could be based on metadata, on values or on columns individually [Fowler, 2015]. An
example could be setting permissions on a document based on predefined keywords it contains. The
Attribute-BasedAccess Control (ABAC), sometimes referred as Policy-Based Access Control (PBAC),
is an access control paradigmwhereby access rights are granted through combinations of attributes.
The attributes can be one of the four main types, namely subject attributes, resource attributes,
action attributes and environment attributes. These combinations supports the Boolean operations
(And, Or, XOr, If... Then... Else...) on attributes.

Most of NoSQL datastores save records before they allow the DataBase Administrators (DBAs)
to configure the permissions. Between the saving time and the permissions setting time, records are
available for manipulations to applications without restrictions, what might be not desirable. One
solution consists in performing ACID-compliant transactions during the ingestion of data. Within one
transaction, the content and its metadata are then analyzed by a pre-commit triggerwhich modifies
the permissions accordingly [Fowler, 2015]. Since these steps are performed within a transaction,
the content is therefore available to the applications only after the correct access control policies are
already configured. For ACID-non-compliant NoSQL datastores, they should provide a gateway to
configure this type of restrictions. Otherwise, it must be handled at the application level.

6.7.5 Using DataWarehouses and OLAP tools

Besides the need to restrict its access to users other than the DBAs, data access control should also
be configured in regards to applications. Within the applications designed to meet the needs of
an organization, reporting tools have an important role and are one of the main reasons to ensure
severe data protection policies. Since each microservice in the MOA is independent and have its own
persistence tier (Section 3.1.2), each business logic has access only to data it needs and it is protected
from unauthorized access from outside the microservice boundaries20. But, what happens when
a reporting tool needs data from several “autonomous” data tiers? How to combine independent
security policies?

An approach consists in running MapReduce tasks to fill a centralized data warehouse. Then,
reports and OLAP cubes can access to it and be fine-grained configured for security policies
as mentioned earlier and illustrated in the Figure 6.11. That shifts the responsibility to ensure
data security away from standalone performance-driven NoSQL-based microservices to OLAP tools
[McCreary and Kelly, 2013]. Access control can even be configured to generate reports only if a
predefined quorum of responses from various parts is met. As example, a decision maker might
query the number of subscribers by country of an offered service. As setting, the ad hoc reporting
toolmight be configured to return a result set only if there aremore than 500,000 distinct subscribers
on a specific continent.

6.7.6 Application- vs. Database-level Security policies: tradeoffs

As already mentioned, data protection schemes can be implemented in two different levels. With
the philosophy behind the relational DBMSs, they usually encompass functions and configurations
to set strong access control policies. Due to different focuses of the NoSQL paradigm, nonfunctional
requirements such as the data protection fall within the scope of the application’s responsibilities,
even though more and more NoSQL vendors propose engines with APIs to perform these
capabilities.

The first benefit of the database-level security is the policy consistency
[McCreary and Kelly, 2013]. As there is no need to set individualized policies, a centralized

20Subject to a good microservice decomposition. More in Section 3.2.

A Milestone for sustainable Remote Vehicle Capabilities 102

Databases and Data Schemas

Figure 6.11: Using a data warehouse and OLAP tools to handle data security policies.
Security policies can be fine-grained configured in OLAP and reporting tools.

location of these rules reduce the risk of contradictions between permissions. Moreover, OLAP and
reporting tools can access directly to the database without an intermediary tier that limits their
ability. Another advantage is the possibility to perform ah hoc reporting faster, as a consequence
of the previous. Sometimes, many reports are generated by the users before they reach which ones
are relevant for their use cases, by sharpening the retrieval conditions. And, a centralized security
policies management eases the audit of data [McCreary and Kelly, 2013]. For any reasons, the data
generated by a organization must be audited at a frequency that depends on its field of activity,
sometimes required by the legislation.

Application-level data protection enables to have a better database engine performance
[McCreary and Kelly, 2013]. The engine does not have to run triggers or checking procedures each
time data is queried. In addition, it lowers the disk usage of the database. Although the gain is
negligible in most DBMSs, some are still keeping security information within or close to each record.
Data protection at the application level might also be seen as an additional security layer in the
system. For example, the system designersmightwant to limit the number of queries performed per
user’s role [McCreary and Kelly, 2013]. However, implementing security policies at the application
level is time-, energy- and money-intensive [Fowler, 2015].

6.7.7 Using the API gateway

Another approach make the use of the API gateway discussed in Section 3.3.3. As additional
responsibility, this god class might also handle the configurations of the various permissions and
the related user’s roles. Since its primary responsibility involves to interact with all the other
microservices of the system, the API gateway is able to combine very well the various data security
policies from the others (Figure 6.12). By this way, third-party applications and users will be allowed
to access only to data within the limits of their rights. Moreover, the separation of concerns and the
autonomyofmicroservices are not altered. As benefit, there is no need for a separate datawarehouse
or a buffer to provide data toOLAP and reporting tools. They can query the data by interacting directly
with the API gateway. However, this will increase the operational complexity and the workload of
the latter.

A Milestone for sustainable Remote Vehicle Capabilities 103

Databases and Data Schemas

Figure 6.12: Using the API gateway to handle data security policies. It is responsible to
combine various policies before sending data to OLAP and reporting tools.

6.8 Information search in NoSQL DBMSs

Almost everyone had already searched data related to a topic at least once in lifetime. Most of the
time, the user needs information rather than simple (raw) data. For instance, the results of a search
with vehicle diagnostic as keywordswould bemore useful when they have articles in the automotive
industry with content about on- and off-board communication with the vehicle. If the search simply
looks for documents containing these two words, maybe taken separately, it might return articles
on health whereby patients are diagnosed by a doctor, which might be irrelevant in this context. In
the next section, we discussed the differences between the searches, followed by some strategies
implemented by engines to deliver good quality of result sets.

6.8.1 Types of search in general

Definition of terms

From the language dictionary, to search means to move around in, go through, or look through to
find something. In the digital world, it is defined as seeking data that matches a word, phrase, or
pattern of characters [Farlex, 2019]. In the context of datastores, the objective is to retrieve items
from a DBMS with only partial or incomplete information about them [McCreary and Kelly, 2013].
There are three main types of contents:

• high structured tuples such as those found in RDBMSs;
• unstructured documents such as text and media documents;
• semi-structured data which is a combined type from the two previous. For example, a
document might bemade up of a picture or a video stored on one part, and thewell-structured
metadata on the other.

Whatever the type of document, more and more semantic search is required from the users. But,
there are three main categories of search [McCreary and Kelly, 2013]:

• the boolean search used in RDBMSs where the boolean operators And, Or, =, Not and the
others are applied in the condition of a “Select … From” query for rigorous matches of records.
Here, results can not be sorted by similarity with keywords;

• the full-text keyword search implemented in specialized frameworks to look into documents
for search keywords. They use concepts such as vector distance between words to return text
documents related to the search criteria. This approach is able to discard irrelevant words for
the search such as articles and conjunctions, and to focus on keywords’ stems. However, they
do not allow to narrow the results by period of time or by type of document;

A Milestone for sustainable Remote Vehicle Capabilities 104

Databases and Data Schemas

• the structured search, which uses the best of the two previous types. This type allows complex
combinations of boolean or logical operators, full-text search in the content whenever it is
possible, the restriction of the number of results based on the metadata if available to finally
return the correct/relevant documents and correctly sorted.

Extended types of search

One of the most important properties of a NoSQL datastore is its findability, which refers to its
capability to provide users information they are looking for. To increased this capability, such DBMSs
extend the type of search above with the following [Fowler, 2015, McCreary and Kelly, 2013]:

• the semi-structured search concerns data with a rigid structure and full text content. Some
examples are orders with products’ description. The orders’ metadata are highly structured,
while the field with products’ description is a free text;

• the geographic search adds the geographic distance calculations to sort the results. A typical
example is the search of the nearest – orwithin a defined range –shops from a fixed geographic
position;

• the network search uses calculations from graph theory on data – such as from social networks
– to sort the result sets;

• the faceted searchmake use of aspects, called facets or dimensions, to sharpen the searching
process by applyingmultiple faceted-based classification filters. A facet has a name and returns
the number of records matching this name. For example, a faceted search in the models
of a phone manufacturer might return results like Advanced faceting can include hierarchical

Unlocked (23)
Dual SIM (17)
Price ≤ 400e (41)
. . .

facet values, values per period of time (daily, monthly, quarterly…) and even heat map regions.
Applied to a document datastore, facets are usually document’s properties. However, for
faceting to be effective in a similar case, such metadata must be of high-quality;

• the vector search is based on the similarity between the keywords and the contents to rank
them. The similarity calculations use the multidimensional vector distance models, where
keywords represent one dimension to form a spacial system. On the other side, the number
of occurrences of each keyword in a document defines the coordinate in that keyword’s
dimension of the document’s vector. Then, the distance between the document’s vector and
each keyword’s vectors determines how close the document is to the keyword. Anotherway to
determine the document’s vector consist in calculating the Term Frequency-Inverse Document
Frequency (TF-IDF). The term frequency is the number of word’s occurrences in a document,
while the inverse document frequency is the number of documents divided by the number of
those containing the word. The TF-IDF of each keyword is therefore the coordinate of the
document’s vector in that keyword dimension;

• theN-gram search extracts fixed-short-length strings from long strings, and builds indexes on
these strings for exact match including whitespaces eventually. This technique might need a
large amount of space to store indexes, but is very fast. These indexes are useful to finding
patterns in long strings.

6.8.2 Effective Search Strategies in NoSQL datastores

The types of search discussed previously have benefits, as they allow to perform semantic search
and to provide information needed instead of simple (raw) data. But, these techniques must be
implemented in an effective manner to elicit interest.

A Milestone for sustainable Remote Vehicle Capabilities 105

Databases and Data Schemas

Algorithm-based strategies

For these reasons, NoSQL DBMSs are using many mutually nonexclusive approaches whose some
are [McCreary and Kelly, 2013]:

• using the range index consists in indexing all values in the database in an increasing order. Such
indexes are very well suitable for strings, dates and scalars when some arithmetic functions
such as (cumulative) sum, average, median are needed, or to find records within a range for
instance;

• the reverse index as its name says, works in the reverse way as the index works. It tracks the
list of documents containing a set of (key-) words, in contrary to the normal index whereby
words’ occurrences within a single document are listed; theMapReduce algorithm can be used
to build this index type;

• in the search ranking, the results are likelihood-based sorted. This likelihood calculation is
based on the keyword densitywithin documents, i.e. the number of occurrences in a document
weighted by that document’s size. This approach might also take into account some metadata
such as document’s rating, type and/or relevance;

• similar to one aspect of the XQuery’s powerfulness discussed in Section 6.5.4, the stemming
search enables a root word – called stem – to be used as keyword, so that its variations can
also be used during the searching process: with write as keyword, writing, wrote and written
might also be used for matches;

• the synonym expansion as its name says, consists in using keywords’ synonyms during the
search. A gateway to a thesaurus database might be required to perform this searching
technique;

• with the entity extraction, the search consists in finding and tagging entities by type within
a content. For example, a search might look for entity types location names, persons, dates,
product-specific models to tag when using this technique;

• also similarly as in Section 6.5.4, the wildcard search makes the use of special characters
and regular expressions to match against documents’ contents. However, the bigger is the
regular expressions range, the more space might be required by this search strategy to store
the indexes;

• the proximity search refers to the distance – the nearness – between keywords within
documents, i.e., taken by pair, how many other words are between them: the closer they are,
the higher is ranked the document;

• the concept of Key Word In Context (KWIC) allows to highlight the keywords in each result.
Usually, the involved results are decoratedwith a highlight color on keywords or by surrounding
them with wrappers;

• as already proposed by some search engines nowadays, the misspelled words strategy
suggests a dictionary word when a mistaken or unrecognized keyword is detected. For
example, the system might ask “Do you mean...” followed by a list of possible correct word
spellings.

Structure-based strategy

Another strategy consists in using the document structure. The idea here is to rank results according
where in the documents the keywords are found [McCreary and Kelly, 2013]. For example, when a
keyword is found in a document’s title, it is probablymore relevant than another inwhich the keyword
is found in its body. When cited in the title, it is more probable that the document discusses about the
keyword. And, when found in the body, it could be only a cross reference, or just a paragraph about
it. Likewise, when the keyword is found in the document’s glossary, the result is more pertinent than
when it matches a reference in the bibliography. When found in the glossary, the number of the
keyword occurrences in the document might be higher than when found in its bibliography.

A Milestone for sustainable Remote Vehicle Capabilities 106

Databases and Data Schemas

6.9 Other types of DBMSs

6.9.1 ODBMSs

An Object-Oriented DataBase Management System (OODBMS), also called Object DataBase
Management System (ODBMS), is a third generation of DBMSs where data is stored as objects
similarly as in object-oriented programming, in contrast to RDBMSs which are table-oriented.
It merges database capabilities with object-oriented programming language capabilities
[Connolly and Begg, 2015, Damesha, 2015], such as object identity, encapsulation, inheritance,
dynamic binding amongst others. Hence, the developers can maintain the data consistency by using
the same representation model as in the object-oriented design. This group of DBMSs was design
to store very large complex data related to the Computer Aided Design (CAD), Computer Aided
manufacturing (CAM), Computer Aided Software Engineering (CASE) or to the network planning
[Connolly and Begg, 2015, Damesha, 2015].

Benefits of ODBMSs

This type of DBMS allows to store real-world data more realistically. Knowing that a real-world
object has a state, a behavior and might contain the relationships with others, the object-oriented
datamodel is more suitable to capture such complex entities than the classical relational model. This
enables the schema to be more intuitive, better structured and capture the application’s semantic
more easily [Connolly and Begg, 2015]. Additionally, the inheritance property allows to reduce the
redundancy in the database. This also allows the reuse of data classes and the built of newdata types
by extending the existing ones. With a single language interface, there is no impedance mismatch
anymore between theDML and the programming language [Connolly and Begg, 2015]. For instance,
there are some “gaps” when mapping a declarative language (SQL) to an imperative one such as the
C. Last and not the least, many benchmarks of ODBMSs illustrate a better performance over RDBMSs
[Connolly and Begg, 2015].

Limitations

There is neither an universal model for data for ODBMSs, nor theoretical basis as in RDBMSs,
although the ODMG21 proposed some standards. Moreover, this type of datastore not widespread
as relational and NoSQL families. And, its learning curve for designing and administration could
be stiff [Connolly and Begg, 2015]. During concurrent accesses, the use of locking of objects is
ineffective. Due to the inheritance feature, this might have a negative impact on the performance.
Furthermore, ODBMSs are more complex to use than the RDBMSs because of their many embedded
functionalities. They also do not support the data view concept as in relational datastores, which
might be very important for data access security and customization of data sets. The inheritance
structure of classes make difficult to implement the user access rights on individual objects
[Connolly and Begg, 2015].

6.9.2 NewSQL Databases

NewStructured Query Language (NewSQL) is a type of RDBMS that aim to provide the scalability
of NoSQL datastores for OLTP workloads while maintaining the ACID properties of relational
systems [Pavlo and Aslett, 2016, Aslett, 2011]. Many RDBMSs use dynamic locking to achieve
transaction consistency. But, this mechanism applied on OLTP is not a good alternative
[Stonebraker et al., 2007]. First, OLTP transactions are very short-lived, i.e. there are no user-stalls
and do not require any disk activity. Secondly, they manipulate few data per transaction. They

21The Object Data Management Group (ODMG) aimed to publish a set of specifications that allows to write portable
applications for object database and object-relational mapping products. More at [Cattell and Barry, 2000].

A Milestone for sustainable Remote Vehicle Capabilities 107

Databases and Data Schemas

are decomposed into smaller commands that are executed locally in a node. Moreover, the
look-ups are index-based to speed up the data search. When they are carefully designed,
there are few transaction collisions and deadlocks to avoid a degraded performance. And, they
also have a small number of queries with different input data. To improve the performance,
some systems discard heavyweight recovery or concurrency control [Pavlo and Aslett, 2016,
Stonebraker and Cattell, 2011, Stonebraker et al., 2007].

Such datastores are able to execute query execution in a parallel way. The more there
are nodes, the faster the queries will be executed and the overall capacity of the DBMS will be
increased. In such implementations, there are aggregator nodes that distribute queries across the
leaf nodes for execution and aggregate the results thereafter (Figure 6.13). To handle concurrency,
some NewSQL DBMSs use the Multi-Version Concurrency Control (MVCC) protocol and non-blocking
indexes. Moreover, they also support hot-swap of nodes capabilities [Oliveira and Bernardino, 2017].
Some others use the shared-nothing architecture and transparent replication, which ensures the
correctness and the availability of data at any time. To increase the capacity, they use the
horizontal scaling or increase the number of nodes within a cluster [Oliveira and Bernardino, 2017,
Pavlo and Aslett, 2016]. In the near future, database applications must be able to execute analytical
queries and machine learning algorithms on “live” data. Known as “real-time analytics” or Hybrid
Transaction/Analytical Processing (HTAP), such workloads aim to provide insights and knowledge by
analyzing historical data and newly collected data. It allows business real-time decisionmaking. This
is in contrast to traditional business intelligence operations that could only infer on historical data
[Pavlo and Aslett, 2016].

Figure 6.13: Parallel execution of queries [MemSQL, 2017]. Similarly to the federated
search earlier, queries are distributed across leaves. Data sharding is a precondition, and

the number of leaves determines the level of parallelism.

6.9.3 Hybrid DBMSs

A DBMS can be called hybrid technically when it supports more than one data architecture pattern.
However, supporting a new data type does not make a database a hybrid unless manipulation
operations related to that type of data are also implemented. For example, document datastores
do not always belong to the key-value category even though it is technically possible to store values
against keys in the former type. Similarly, not all DBMSs implementing an in-memory caching policy
are labeled as column datastores [Fowler, 2015].

Advantages of Hybrid Datastores

Hybrid database systems have some benefits. First, they offer the benefits of many technologies
under one DBMS. For instance, some hybrid DBMSs offer the benefits of a document datastore and
triple datastore in the same engine. Hence, the developers do not have to write many different
data access codes to handle the persistence layer. This enables a single tech stack, i.e. the system’s

A Milestone for sustainable Remote Vehicle Capabilities 108

Databases and Data Schemas

business logic has to cooperate with only one persistence layer while exploiting the advantages of
each technology underneath [Fowler, 2015]. During search in an hybrid datastore, the application
can take advantage of the semantic technology provided by the triple datastore,whichmight produce
answers instead of simple result sets.

Additionally, hybrid DBMSs allow to avoid duplication of indexes. With the same previous
example, when the two stores are separated from each other, indexes on documents and triples
are stored separately, although the same values might be indexed. When the two technologies
are combined, the engine supports a unique set of indexes for the values. This allows to save
storage space and time during the eventual re-indexing phases. Moreover, developers and databases
administrators do not have to be trained in each embedded database engine’s technology, as
they can access to the data via a single API. This lowers the training and maintenance costs
[Fowler, 2015].

Limitations of Hybrid Datastores

However, hybrid technologies have the unfortunate tendency to implement an all-in-one solution.
They always implement newfeatures over the time to differentiate themselves from the competition.
Such a philosophy put solutions at risk to underperform in every domain they are trying to support
[Fowler, 2015]. By thisway, theymight not provide the technology-specific benefits discussed above
anymore. Selecting an hybrid DBMS is then a matter of trade-off. The designers should identify
which functionality is the most important for the system. Does the system have to reply extremely
well to content search? Then, a document datastore is more appropriate. If the system should
also be context aware, and hybrid database might be the path to follow. To go even further, if it
must perform operations such as the shortest path between elements, a (sub-)set of topic-related
documents or, how close two contents are, then, it might be preferable to cooperate with each
technology separately, namely a graph datastore and document-oriented database.

6.10 Summary of the chapter

This chapter closes the second part about fundamentals in this document. We discussed here various
data patterns and datastore philosophies for the persistence tiers for our software architecture.
We started with definitions, then followed the relational datastore type with its data manipulation
methods and principles. We continued with the NoSQL datastore type, its characteristics, some
optimization techniques and how data consistency can be ensured in this type of datastore. We built
a comparison table to show which usages are suitable to each of these datastore types. We also
explored data security policies used in NoSQL datastores and how to perform efficient data search in
such datastore types. We finished this chapterwith an overview on other types of datastores.

In the next part we present the Software Architecture we designed, namely the Dictionary
Server and its building blocks. We also present the persistence tiers of our solution, namely the
Dictionary Database, its entities and its data model. During the implementation phase, we discuss
the detailed design of our software architecture, the policies and tools for data and system security
in the prototype we built.

A Milestone for sustainable Remote Vehicle Capabilities 109

Part III

The Dictionary Server

A Milestone for sustainable Remote Vehicle Capabilities 110

Chapter 7

Dictionary Server

I never discovered anything of value
with my rational mind.

– Albert Einstein

In this chapter, we present our solution and howwe designed it. We start with a short description of
the activities undertaken to produce our architecture. Then, we present the solution, its architecture
and the interactions between its building blocks. After that, we describe the security measures we
applied to protect system data to conclude this chapter.

7.1 Architecture Design Activities

During the design phase, we have gone through the four main activities in software architecture
design as discussed in [Hofmeister et al., 2007]. These architecture activities are executed iteratively
and at different stages of the initial software development life cycle as well as the system
evolves:

• architectural analysis: it is the process of understanding the environment in which a proposed
system or systems will operate and determining the requirements for the system. The input or
requirements to the analysis activity include items such as the functional and non-functional
requirements as defined in the ISO 25010:2011 norm [ISO, 2011d], business requirements and
environmental context of a system that may change over time, such as legal, social, financial,
competitive, and technology concerns [Hofmeister et al., 2007];

• architectural synthesis or design: it is the process of creating an architecture; the design is
created and improved according to the architecturally significant requirements, the current
state of design and the results of any evaluation activities [Bass et al., 2012];

• architecture evaluation: it is the process of determining how well the current design or a
portion of it satisfies the requirements derived during analysis; it can occur during the design
phase whenever a design decision should be made, at some point of the design phase, at the
end of the design or it can occur even after the system has been constructed;

• architecture evolution: it is the process of maintaining and adapting an existing software
architecture to meet requirements and environmental changes; as software architect designs
the central structure of a software system, its evolution andmaintenancewould impact its core
structure, since architecture evolution include to add new functionalities aswell as maintaining
existing ones and system behavior.

The four steps above are the core of the process in software architecture design on which this work
is based. They require knowledge management, proficient communication skills, design reasoning,
decision making and not the least, a well-done documentation.

A Milestone for sustainable Remote Vehicle Capabilities 111

Dictionary Server

7.2 Dictionary Server Design

We designed our solution, namely the Dictionary Server, through Agile software development
methods1. We started with the DDD and then sharpened our model with complementary methods
discussed in Section 3.2. This solution shifts the D-Server’s complexity and structure on the server
side. A simplified overview of this Dictionary Server is illustrated in the Figure 7.1. It could be
a (unique) communication interface between all parties involved in ECU life cycle and the OEM
diagnostic database, improving thereupon the architecture discussed in Section 2.3 by:

• harmonizing communication protocol (e.g. through a web service gateway);

• enabling a simplified and lightweight data exchange format between them, like JSON2 instead
of transporting the whole ODX database each time a third-party needs information on ECUs;

• moving the complexity of querying an ODX database to the OEM side: the involved parties will
not have to bother with the underneath technology and the complex data model of ODX files
anymore, but rather could focus themselves more on their core business;

Figure 7.1: Diagnostic applications architecture with access to the Dictionary Server.

7.2.1 Advantages of the Dictionary Server

Moving the D-Server’s logic to the server side leads to the architecture illustrated in the
Figure 7.1. This architectural design of diagnostic elements has the following benefits
[Poaka et al., 2020]:

• diagnostic applications do not have to be “fat” anymore, requiring specific diagnostic devices,
but rather they could be thin or mobile-based; this could really facilitate daily tasks not only
of technicians during vehicle maintenance, but also tasks of those performing diagnostic tests
during manufacturing;

• diagnostic applications will not be dependent of the implementation technology of the
D-Server API anymore: as shown in the Figure 2.10, diagnostic applications must be
implemented in the same technology as that used for the D-Server API, or at least must
use a wrapper, to be able to collaborate with it. With a communication interface and a

1See appendix Appendix 3
2JSON is a text-based, open-standard, programming language-independent machine-readable data-interchange

format, easy for humans to read and write. More at [JSON, 2017, ECMA, 2013, ECMA, 2017].

A Milestone for sustainable Remote Vehicle Capabilities 112

Dictionary Server

data-interchange format that are technology-independent, diagnostic applications and the
Dictionary Server can be implemented in different programming languages;

• OEM’s know-how is better protected due to the fact that the ODX database does not have to
be moved to application clients anymore, but rather will be accessed only via a well-defined
communication interface, eventually with access control. The runtime format could still be
used but it will not be an absolute necessity anymore;

• as the database is moved on a remote (OEM’s) server, only relevant data needs to be sent
throughout the network when a request is received by the Dictionary Server, according towhat
client applications require: the network is used efficiently;

• updates of APIs and diagnostic applications are easier and independent to perform in
comparison to the existing architecture.

7.2.2 Architecture Design of the Dictionary Server

In the Figure 7.1, ODX files are required to provide diagnostic data to the Dictionary Server. A look
back to the ECU life cycle in the Figure 2.4 shows that each activity has its own rate and rhythm.
For instance, the edition of ODX files does not occur at the same frequency as that of diagnostic
tasks, which are performed many times a day. Due to such discrepancies between use cases, we
distinguished two main modes [Poaka et al., 2020]:

(a) the reading mode when the ODX database is intensively requested, mainly for diagnostic
purposes such as retrieval of measured values or error codes interpretation;

(b) thewriting modewhen it is used for edition and creation of new ODX elements for instance.

To achieve the first mode, it is not smart to design an architecture wherein every single diagnostic
request necessitates a reading access to the ODX files themselves directly. Thatwill not only lead to a
high network trafficwith probably high latency, but also and themost, will cause performance issues
on the server side, since raw access to files on disks is known to be a time- and memory-consuming
task. These consequenceswill only slowdown the various activities around the ODX files data source.
This is where a high-performanceDatabase-in-the-middle is very helpful. The idea here is to extract
necessary diagnostic data and import it into a database3 called Data Dictionary or ODX Dictionary
as shown in the Figure 7.2. This database will then be available to test and diagnostic applications
exclusively from a Dictionary Service reachable via a Dictionary Communication Interface (not an
API). The data exchange between these parties must be in a protocol- and technology-independent
format, to ensure that all, or at least the large majority of current and future diagnostic applications
will run flawlessly after only small adjustments of their communication gateway without significant
changes in their core business layer.

Now, we need to discuss in details the four new components and how the communication between
diagnostic applications and the server takes place.

7.2.3 Building blocks of the Dictionary Server

Dictionary Extractor

This component is responsible to perform almost exactly what diagnostic applications are doing
today in terms of extracting relevant data from ODX files through the D-Server API normalized
in [ISO, 2012a]. But instead of running diagnostic tasks directly after, it will rather populate the
database-in-the-middle (Data Dictionary) with this data [Poaka et al., 2020]. This is the writing
mode described in Section 7.2.2. Since the D-Server API is already given for many platforms
[ISO, 2009, ASAM, 2011, ISO, 2012a], it is up to the system designer to choose the most appropriate
technology to build this extractor, according to the target deployment environment.

3The database here can be of any types discussed in Chapter 6. It should only be a very high-performance one.

A Milestone for sustainable Remote Vehicle Capabilities 113

Dictionary Server

Figure 7.2: Dictionary Server architecture with the ODX Dictionary [Poaka et al., 2020].

A vehicle manufacturer implements electronic systems into multiple new vehicle platforms.
Across different vehicle projects, there are little variations in the electronic system. The majority
of design, normal operation and diagnostic data of an electronic system can be reused in various
vehicles. Therefore, redundant development efforts are avoided [ISO, 2008b]. This data extraction
should be then performed only as many times as updates occur or when new data are created. This
extraction procedure could also then occur on a separate server. The data is then exported and
transported into the target database-in-the-middle.

ODX Dictionary

This is the persistence tiers and must be very high-performance and extremely efficient, as it is
the bottleneck of the Dictionary Server. For instance, it should be capable to handle thousands of
retrieving requests per second, even millions as it is intended to be used by biggest automakers to
cover their entire fleet, but also it could be granted for access via the Dictionary Service to external
and private system developers. This database should be architecturally as close as possible to the
Dictionary Service to optimize the response time of data requests. Because of the importance of this
component, we discuss its architecture and its schema more in details in Chapter 8, which is based
on the UML data model normalized in ISO 22901-1 and published in [ISO, 2008b].

Dictionary Service

As a single access point to the whole Dictionary Server from the outside world, this component
is also important and is subject to take into account not only all best-practices in software
engineering, but also and mostly, it must fulfill the criteria of software quality. Due to the workload
of the ODX Dictionary mentioned before, system designers should also be smart to select an
appropriate environment where this service will be deployed. Moreover, they have a considerable
leeway to choose the implementation technology in order to benefit from the best of a platform
in terms of queries to databases, since this service operates in the reading mode described in
Section 7.2.2.

Let us take a look back at the example of a diagnostic process illustrated in the Figure 2.11.

A Milestone for sustainable Remote Vehicle Capabilities 114

Dictionary Server

For each request to have a measured value in a human-readable form, at least two queries to the
diagnostic data description database must be performed. With a remote Dictionary Server, the steps
are the same, but due to network constraints, their order could eventually change a few. For example,
the two queries to the diagnostic data description database do not have to be executed separately,
but rather together after the 1st step. Concrete examples could be wherein the corresponding
computational method for decoding hexadecimal diagnostic responses is one of the “simple types”4

such as identical, linear or rational function. Other changes could also be made by the designers to
optimize the network traffic, as long as the whole process is executed.

Dictionary Communication Interface

Depending on functions released by the gateway, an interface could be designed and forward to
client applications that want to access to the Dictionary Server. For long-term solutions, standards
in remote communication in software engineering must be used. For example, it could be based on
the Web Service Definition Language (WSDL)5, a ReSTful service client or any from the inter-process
communication technologies discussed in Section 3.4. The most important here is to take into
account the constraints and specifications of the deployment environment.

7.3 Main algorithms

As mentioned in Section 7.2.2, we designed and implemented the Dictionary Server which is made
up of several components. Each one has its own business logic directed by a principal algorithm and
some non-functional operations. In the next sections, we will focus on components’ business logic
starting from that of the Dictionary Extractor.

7.3.1 Data extraction algorithm

Since the Dictionary Extractor’s role is to read and store relevant diagnostic data from vehicle
projects, it must incorporate a capability to handle medium- to big-size ODX files. The corresponding
pseudo-code is detailed in the Algorithm 7.3.2. It starts with the initialization of the runtime
environment and by setting variables to avoid conflicts within the same running instance. Then
follows the extraction of files into a temporary folder for the next steps. Next, the metadata of
the vehicle project is analyzed and its short-name is made available to the remaining part of the
algorithm. After this sequential part of the algorithm, each .odx file is parsed for diagnostic data
extraction.

As the .odx files are physically independent (but logically interconnected), the for- loop
instruction on the Line 15 in the extraction algorithm can be parallelized. The parallel programming
model to use here is the one that follows the strong scaling discussed later in Section 10.1.3. Since
this loop is approximately 95% of the whole data extraction algorithm, the execution time can
therefore be optimized up to a 20-fold factor. The corresponding procedure is discussed in the
following section. The algorithm terminates by releasing the resources, resetting eventual counters
and outputting the execution duration time (for debugging purposes for instance).

7.3.2 Parsing of the ECU diagnostic data description file

This is one of the most important tasks of the Dictionary Server and is presented in the
Algorithm 7.3.3. After the metadata files of the vehicle project are analyzed as precondition in the
Algorithm 7.3.2, the various control units specification files, namely the ODX files, are parsed to

4All computational methods are discussed in Chapter 8.
5WSDL is a description of network services in XML format as a set of endpoints operating on messages containing

either document-oriented or procedure-oriented information. More onWeb Services in [Alonso et al., 2013, Gurugé, 2004,
Richardson and Ruby, 2007].

A Milestone for sustainable Remote Vehicle Capabilities 115

Dictionary Server

Algorithm 7.3.1 Bulk insertion algorithm.

Require: Set of values
Output: Number of inserted values

1: function BulkInsert(set of values)
2: manager ← repositoryManagerInstance; . A connection to the database from a pool
3: chunk ← 10, 000; . This limit depends on the DBMS, 10,000 here

is solely an example.
4: counter ← 0;
5: for index← 0 to size(values) step chunk do
6: upper ← min(index+ chunk, size(values));
7: sub← subset(values, index, upper);
8: counter ← counter + insert(manager, sub); . Under the assumption that the insertion

itself in the database returns the
effective number of inserted values

9: end for
10: return counter; . The number of effectively inserted values
11: end function

Algorithm 7.3.2 Data extraction algorithm.

Require: ODX archive/vehicle project
Output: Parsing time

1: function ExtractData(vehicle project)
2: initialize the runtime environment; . clean the temporary folder if the same

instance is not running
3: copy the archive in the temporary folder;
4: parsingStarted← true; . A boolean to handle concurrency within

the same per instance
5: reset environment and counters; . Static variables and eventually time capture
6: extract files from the archive;
7: wait the extraction to finish;
8: parse VehicleInfoSpec file: . Root element
9: check if it already exists in the database;
10: bulk insert of its node elements; . Node elements are made up of project’s

short-name, revision and other metadata
11: return project’s short-name; . Also called project’s ID
12: end parse
13: load the ODX schema;
14: for each .odx file in archive’s entries do
15: parse(odx archive’s entry, project’s ID, .odx schema); . In details in Algorithm 7.3.3
16: end for
17: parsingStarted← false;
18: finish the parsing; . Cleaning the runtime environment, time capture, etc.
19: output the parsing time duration;
20: end function

extract relevant diagnostic data. But, to avoid potential errors and improve the algorithm resilience,
each .odx file is checked against the ODX schema. Then, a check is performed in the database to
avoid duplicates. The control unit’s short-name is used as its ID and ismade available to the extracted

A Milestone for sustainable Remote Vehicle Capabilities 116

Dictionary Server

values similarly as the foreign key mechanism in the Line 21.

Since the size of the .odx file depends strongly on the ECU’s capabilities, these files have
different sizes. Moreover, the number of ECUs in a vehicle depends on howmodern it is, i.e. vehicle
projects grow with time due to innovation in electronics and automotive software. Hence, a weak
scaling discussed in Section 10.1.4, is more appropriate as the problem to tackle is not static in size.
For this reason, to parallelize data extraction in the repeat- loop in the Line 18, we defined a fixed
workload per processing core in the Line 10. Each processing core is responsible of values extraction
only from a single partition of an .odx file. During the extraction, the values are filled into a concurrent
data structure. The algorithm concludes by calling another function for an ulterior bulk insertion into
the database.

Algorithm 7.3.3 File parsing algorithm.

Require: ODX file, project’s ID, .odx schema

1: procedure Parse(.odx file, project’s ID, .odx schema)
2: validate the .odx file against the schema; . The newest version is the ODX 2.2.0
3: if not valid then
4: return;
5: end if
6: if ECU short-name not in the database yet then
7: insert(ECU short-name, project’s ID);
8: end if
9: sn← ECU short-name;
10: threshold← maxSize; . Define a threshold as the max. size of a

piece to be parsed sequentially
11: index← 0;
12: l← length(.odxfile);
13: values← emptySet;
14: repeat
15: lower ← threshold ∗ (index+ 1);
16: bound← minimum(lower, l);
17: piece← split(.odxfile, size ∗ index, bound);
18: values← values+ extractValues(piece); . The values here are diagnostic data, as

discussed in Section 7.3.3
19: index← index+ 1;
20: until not (end of .odx file) and (piece neither null nor empty);
21: bulkInsert(sn, values); . Insertion in the database, as detailed in Section 7.3.4
22: end procedure

7.3.3 Values extraction algorithm

This function builds a set of extracted values from a section of an .odx file (Algorithm 7.3.4). One
instance of this function is responsible for extracting only values of same type (the different data
types that are relevant for a diagnostic context are discussed in Section 7.4.1). As a single function
processing unit, it parses the input (sequentially) similarly to howto browse a list of elements. A set of
extracted values is gradually built in the while- loop (Line 3) and is the function’s return value.

7.3.4 Bulk insertion of values

For optimization purposes, we designed the function in the Algorithm 7.3.1 separately from the
above ones. The main idea of this function is to prepare a persistence context for an optimal

A Milestone for sustainable Remote Vehicle Capabilities 117

Dictionary Server

Algorithm 7.3.4 Values extraction algorithm.

Require: One piece of an ODX file
Output: Set of values/diagnostic data

1: function ExtractValues(piece of .odx file)
2: values← emptySet;
3: while nextElement(piece) neither null nor empty do
4: element← nextElement(piece);
5: values← values+ getDataFrom(element); . Extract one of the diagnostic data types

and add it to the set of values
6: end while
7: return values;
8: end function

communication with the DBMS underneath. This starts with a retrieve of a connection instance
to the database from a pool of connections, assuming that this pool is managed by an external
pool manager. If it is not the case, the sequence of the function remains the same, but a direct
connection to the database is instantiated and used instead. Then, the maximal data chunk size is
set, since many DBMSs have a maximum capacity for bulk insertions6. The chunks are sent to the
connection manager for effective insertion in the database in the for- loop. Since the set of data as
input parameter is partitioned in logically independent chunks, the instruction in the Line 8 might
also be strongly parallelized7. In this case, the countermust be thread-safe. The function completes
with a return of the number of actually inserted values.

7.4 Putting it all together: the whole picture

As already mentioned, there are several types of data, which are required from a vehicle project
during a vehicle diagnostic session. Fortunately, their overall design in the ODX specification are
similar to each other. That means the extraction algorithm remains the same, only the data to
extract changes. Those algorithms represent the first part of the Dictionary Server. Given that
vehicle projects have been processed, data extracted and stored in a DBMS, the second part of the
Dictionary Server consists in returning not too much information – to protect the OEM’s know-how
– and not to few – to enable successful vehicle diagnostic procedures by application clients. Let us
start with the data required for vehicle communication in general, and during a vehicle diagnostic
session particularly.

7.4.1 Relevant data type for vehicle diagnostic

A diagnostic session starts always by establishing a communication protocol with an ECU or a
set of ECUs. Such a protocol contains the logical link to the ECU, the physical and logical ECU’s
addresses, the baud rate, the interruptions available, the communication flags amongst many
others communication parameters. After the communication is built, the communication initiator
needs to take knowledge of the set of instructions to which the control unit must react and
how it replies to with eventual measurement units. These instructions are from control unit’s
self-identification to its reinitialization and reprogramming commands going through queries on its
memory, about its execution state and the availablemeasured values.

Control units reply in hexadecimal values. To proceed with the sequence of request–response
between the sender and a control unit, the former needs to be aware about how to understand those

6As this size depends on the DBMS, its documentation must be consulted.
7Under the condition that the DBMS in use supports concurrent operations on the same persistence entity.

A Milestone for sustainable Remote Vehicle Capabilities 118

Dictionary Server

hexadecimal values including the trouble codes. The translation and interpretation of responses
from control units are therefore an important part of diagnostic data in vehicle projects. For advanced
tasks such as ECU reset and reprogramming, special data like firmware, libraries and pieces of code
are needed by the sender during a diagnostic session. All these data types are those we mentioned
for extraction in the Algorithm 7.3.4. For the sake of simplicity and a better overview, to each type
of data above we assigned an independent instance of the values extraction algorithm. How these
algorithms cooperate along a diagnostic procedure is explained next.

7.4.2 DataWorkflow during a vehicle diagnostic session

To reply to incoming requests from a vehicle diagnostic initiator, each instance of the Algorithm 7.3.4
is supplemented with the corresponding instructions to retrieve data it stored in the database. That
means, the instance responsible for logical link data extraction is also subject to select only logical
link-related information to respond to a query. The instance to extract the set of instructions must
handle the retrieval of only PDU requests. And so on. By this way, the algorithm instances are
independent from each other. This allows a better overview on the whole system than if all of them
aremerged into one instance. Furthermore, it eases the detection of errors and the debugging during
the implementation phase. These are only few advantages of the microservice-oriented design
amongst several others discussed in Section 3.1.4.

Those functions must be coordinated to deliver relevant and meaningful diagnostic data
to application clients. But first, the orderly operations sequence of the single unit of vehicle
communication is designed as follows:

1. identification of the vehicle project using the VIN: it is up to the OEMs to design how to
perform this match. For example, some are using a reference mapping table based on their
manufacturing agenda;

2. query for themeasuredvalue’s ID to deterministicallymatchwhile searching the corresponding
request in the vehicle project: in fact, clients might ask a measured value in a human language
– most of the time its description – and the corresponding ID must be queried for optimized
data search later. As example, ”mileage” and ”Kilometerstand” describe the same measured
value;

3. identification of control units that could deliver a response to the query: in the same vehicle
project, it is not excluded that the same measured value could be delivered by more than one
ECU– even if the valuesmight be slightly different due tomeasurement precision. For example,
the vehiclemileage can be read from the engine control unit aswell as from the dashboard ECU;

4. for each ECU of the previous list, query of their respective logical links – communication
parameters amongst others: the application client might send a ping command to all of them
and build a reliable list of control units that are effectively mounted in the vehicle. This could
even be a way to detect unauthorized modifications of the in-vehicle network;

5. use of the measured value’s ID to query the corresponding set of instructions – PDU requests,
list of commands, attachments – to send to the control unit: in case of large attachment, the
application client plays the role of a temporary data buffer and fill the stream towards the
in-vehicle network according to the communication parameters obtained at the previous step;

6. establishing a communication channel with the ECUs based on the logical links and the set
of instructions delivered by the previous steps: the application client sends the requests and
collects the hexadecimal responses from them;

7. the use of the computational methods to decode the hexadecimal values from the previous
step into human readable data: here, base64 decoding, measurement units, a dictionary for
text translation are used where necessary and final results are returned.

From these steps, we designed the following coordination algorithm.

A Milestone for sustainable Remote Vehicle Capabilities 119

Dictionary Server

7.4.3 Coordination of tasks

The diagnostic procedure of a vehicle in an application client consists in several exchanges with
the Dictionary Server on one side, and with the vehicle itself on the other. The sequence of the
communication with the Dictionary Server is well described in Section 7.4.2. From these steps,
we designed the coordination algorithm representing the information restitution phase, that we
subdivided into three phases as follows:

Identification phase

Algorithm 7.4.1 Coordination algorithm.

Require: VIN, measured value description
Output: Human readable text

Phase 1 - List of compatible control units

Require: VIN, measured value description
Output: List of ECUs that can deliver the measured value

1: function LogicalLinks(vin,mv_description)
2: project_id← getV ehicleProjectFromNumber(vin);
3: . Depends on OEM, might be reference table-based
4: mv_id← searchMeasuredV alueId(project_id,mv_description); . More details later
5: ecus← listOfControlUnits(mv_id);
6: links← emptySet;
7: for each unit ∈ ecus do
8: links← links+ searchLogicalLink(unit);
9: end for each
10: return links; . So that the application client can select which one to use
11: end function

The identification phase described in the Algorithm 7.4.1 corresponds to the steps 1 to 4 of the
sequence in Section 7.4.2. Besides the identification of the vehicle project, it looks for the measure
value’s ID to dispel ambiguity during the execution of the next steps. For flexibility reasons, this phase
returns the list of control units (and their respective logical links) which can deliver values similar to
the description given as input. According to its objectives, the application client can select which one
to proceed with afterwards.

The search of the measured value’s ID in the Algorithm 7.4.1, Line 4 must take into account
many factors. The measured value’s description is a free text field which is filled during the design
of the control unit that supports it (see the ODX life cycle). Although this description is written in the
OEM’s preferred language, the ODX specification requires an ID for every measured value. OEMs are
allowed to select these IDs, with the restriction that theymust be unique within a vehicle project. As
these IDs are know only from their designers, the other diagnostic application users start a search in
the Algorithm 7.4.1 with a vague description. Therefore, this search of the ID with the description as
filtering criteria might take time, as there is not way to attach it to a particular ECU beforehand and
the whole project must be looked throughout.

To optimize this search, we proposed to group the measured values and their descriptions into
clusters by ECU types. For example, the measured values such as the mileage, the oil level and the
coolant temperature are regrouped under the engine_mv type. Those related to the immobilizer and
the gear box are part of the power_train_mv, the internal and external lights under lights_mv, and
so on. By this way, from a measured value’s description, the entire vehicle project does not have to
be browsed anymore and the search is then faster.

A Milestone for sustainable Remote Vehicle Capabilities 120

Dictionary Server

Search phase

Algorithm 7.4.2 Coordination algorithm – Next.

Phase 2 - Set of instructions

Require: project’s ID, control unit’s ID, measured value ID
Output: Set of instructions

12: function Instructions(project_id, ecu_id, mv_id)
13: instruction← emptySet;
14: element← ecu_id;
15: while element neither null nor top of the hierarchy do
16: . More about hierarchy in Section 2.3.3
17: instructions← instructions+ searchInstructions(ecu_id,mv_id);
18: . As a mathematical set, only newvalues are added and existing ones are not

replaced. That reflects the ODX inheritance, where values from sub-layers
override those from super-layers

19: element← getParent(project_id, ecu_id);
20: end while
21: return instructions;
22: end function

The Algorithm 7.4.2 illustrates the search phase which consists in looking for instructions and
commands to perform, necessary libraries, eventual pieces of code and PDU requests to send to
the selected control unit. The application client uses one logical link from the identification phase
and the previous information to open a communication channel and discusswith the ECU – steps 5 &
6 from Section 7.4.2. Then, it uses the next phase to decode the hexadecimal values collected.

Computation phase

After the application client receives responses from the in-vehicle network, these hexadecimal values
have to pass through the computation phase explained in the Algorithm 7.4.3 to be human readable
– step 7 from Section 7.4.2. How to decode these values are also part of the ODX specification and
depends on the queriedmeasured value. These computational methods include the conversion from
hexadecimal to string values, the calculation of rational fractions and the translation of trouble codes
into a preferred language. The method can also be a code snippet to run on application clients for
advanced tasks such as control unit flashing and memory programming.

7.4.4 Sequence diagram of a vehicle diagnostic session

For the sake of clarity, we designed the sequence diagram illustrated in the Figure 7.3. It shows the
three phases discussed in Section 7.4.3 with the involved actor (application client) and objects. The
former triggers the sequence by querying necessary information to the Dictionary Server for a vehicle
communication service through the VIN. After receiving the responses from the vehicle, it makes
use of computational methods hosted on the server side for human readable text. For repetitive
and time-consuming tasks such as the control unit flashing or reprogramming, the second and third
phases are iterated until the diagnostic session ends. According to the seriousness of the issue to
solve in the vehicle, we proposed different levels of diagnostic discussed next.

A Milestone for sustainable Remote Vehicle Capabilities 121

Dictionary Server

Algorithm 7.4.3 Coordination algorithm – Conclusion.

Phase 3 - Decode hexadecimal response

Require: project’s ID, control unit’s ID, measured value ID, hexadecimal response
Output: Human readable text

23: function ComputationalDecoding(project_id, ecu_id, mv_id, hex_value)
24: method← null;
25: element← ecu_id;
26: . Due to the hierarchy between diagnostic layers, the computational method

might be stored rather in one of the super-layers
27: while element neither null nor top of hierarchy andmethod neither null nor empty do
28: method← searchComputationalMethod(project_id, ecu_id,mv_id);
29: element← getParent(project_id, ecu_id);
30: end while
31: clearText← emptyString;
32: ifmethod neither null nor empty then
33: clearText← method(hex_value); . Performing the computation and addition of

the measurement unit if necessary
34: end if
35: return clearText;
36: end function

Figure 7.3: Simplified Sequence diagram of a diagnostic session using the Dictionary
Server. The second and the third phases are to repeat during the session as much as
necessary. Examples for such cases are advanced diagnostic functionalities like ECU

variant coding or memory programming.

A Milestone for sustainable Remote Vehicle Capabilities 122

Dictionary Server

7.5 Design of the the diagnostic levels

Beforewe discuss howwe designed the security at the application level in Section 7.6, it is important
to define the different levels in vehicle diagnostics. The first level of diagnostic it the set of
procedures consisting in running preliminaries tests on the vehicle and retrieving the most used
measured values, such as the speed of the vehicle, its mileage, the engine temperature, the coolant
temperature, the oil and the fuel level, the tire pressure, the brake status and the immobilizer if
available, under the prerequisites that the vehicle is already identified beforehand. Some trouble
codes might also be retrieved during the procedure. These measurements help to have a quick
overview on the current vehicle status, since the values are just collected and eventually stored for
further analysis.

The second diagnostic level collects more measured values and trouble codes, eventually all
possible values in the vehicle, starting from those of the power train, the lights, the air conditioning
up to those from the opening roof and the interior lightingwhen available. These values are analyzed
immediately to repair the vehicle, following the workflow in the Figure 2.3. Here, more specialized
tests are performed and a diagnostic protocol is produced at the end. Similarly as before, an early
vehicle identification is required.

The third level of diagnostic encompasses a limited writing access to the vehicle control units
in addition to those from above, i.e. operations such as the erasure of trouble codes and the reset of
control units. The fourth diagnostic level grants the most advanced access to the vehicle diagnostic
layer, as it allows operations such as the calibration and the programming of controls units and
eventually the (re-)installation of their respective firmware. This level is similar to the full access
to a database by a DBA (Figure 6.10). Based on these layers of vehicle diagnostic access, we are able
to define the possible user roles within the Dictionary Server as discussed next.

7.6 Security in the Dictionary Server

As discussed in Chapter 2, data from vehicle projects must be protected on one side. Access to
such information have to be controlled due to its sensitivity as well as tougher competition in the
automotive industry. On the other side, diagnostic access to vehicles should also be regulated
according to the functions to execute and the data to collect8. In this vein, we used the RBAC as
basis for the design of the data and functions security in the Dictionary Server.

7.6.1 Driver role

The less restrictive access, the driver role, is for the vehicle driver or owner. This role is designed
for non-technicians users, i.e. those with neither the knowledge nor the expertise about the vehicle
communication and the complexity of the internal vehicle network made up of ECUs. Therefore, for
its own safety and for that of the system, the possible actions of this role are restricted to simple
diagnostic tasks – the first diagnostic level. If necessary, the collected measured values can be
forwarded to a more qualified user which is capable to evaluate them. This more qualified user
might eventually assist the driver for providing “first aid” to the vehicle if needed.

7.6.2 Remote Assistant role

The second role it the remote assistant role. It is for users with enough training and qualifications to
read and analyze all the possible measured values and the trouble codes from a vehicle – the second
diagnostic level. This role also grants unrestricted read-only permissions to control units. Users with
this role are able to assist those with the driver role. The remote assistant role is tailored for the
hotline users to rapidly assist drivers in the field remotely.

8Due to the new GDPR, access to data to collect must be strongly supervised.

A Milestone for sustainable Remote Vehicle Capabilities 123

Dictionary Server

7.6.3 Technician role

The next one is the technician role with restricted writing access to the control units in addition to
previous permissions. During the diagnostic procedure, a user with this role might modify the status
of controls units through actions such as deletion of trouble codes or a control unit reset. This role
is required if the remote assistance from above does not solve the issues in the vehicle – the third
diagnostic level. Consequently, this role is suitable for technicians in repair shops.

7.6.4 Advanced Technician role

This role grants full access permissions to the vehicle. Therefore, the advanced technician role is
highly restricted and assigned to fewusers. Besides the actions of the previous roles, the permissions
of this one include advanced and complex operations such as the calibration of control units, the
memory programming/flashing and variant coding to name just a few – the fourth diagnostic level.
Due to the criticality of the allowed operations, these can be performed only by highly qualified
automotive technicians. Moreover, as required by the diagnosticworkflowdepicted in the Figure 2.3,
a diagnostic protocol has also to be produced at the end of the procedure for the maintainability and
a better traceability of the vehicle life cycle.

7.6.5 Campaign Manager

One of themain objectives of the Dictionary Server is to provide remote diagnostic services to vehicle
owners on one hand. These functionalities are protected through the previous four roles based on
access control levels principle. On the other hand, our solution helps OEMs to trigger data collection
from vehicles in the field without expensive supplementary costs. This side of the Dictionary Server
must also implement security policies to protect the system against unauthorized access.

As first administrative role,we designed the campaignmanager role. It allows authorized users
to trigger a campaign for remote data collection from vehicles according to some selection criteria
– the data pull style. A campaign might also be triggered in a data pushmechanism, i.e. to publish
new software functionalities, bug fixes or updates remotely. This enables to avoid high expenses of
recall actionswhereby the fault is software-repairable. As this role allows to reachmillions of vehicle
remotely, it might be divided in two sub-roles, namely:

• the puller manager role responsible for read-only campaign to gather measured values from
the field, eventually in real time, and;

• the pushermanager role for manipulating control units remotely, more restricted as it enables
to trigger serious modifications in vehicles.

7.6.6 Data Analyst

Data is collected for analysis purposes. In automobile industry, a use case of such an analysis is
predictive maintenance of vehicles. Another might be for profiling9 driving behaviors of customers
for more attractive insurance offers. The purpose here is, the less risky one behaves, the less
expensive are the insurance costs. These recommendations can be made by users with the data
analyst role. Due to the objectives of this role, just data read-only permissions are necessary, since
the writing access is irrelevant here. However, these permissions might be more fine-grained to
define who has access to which vehicle data. For the profiling, this data can even be anonymized
according to the accreditation mechanism implemented in the system for instance.

9In respect of the new GDPR where it applies.

A Milestone for sustainable Remote Vehicle Capabilities 124

Dictionary Server

7.7 Summary of the chapter

ODXdatabases are the central point ofmany tasks in automotive industry, starting from their creation
till to their usage through diagnostic projects and by suppliers among others (Figure 2.4). In this
chapter, we discussed the design activities we executed to deliver the Dictionary Server. Then, we
presented the Dictionary Server itself with its building blocks and its algorithms. After that, we
presented how these building blocks collaborate to reply to queries and we finished with a design
of a role-based access control as security measures to avoid unauthorized access to the Dictionary
Server.

In the next chapter, we will discuss the main component of the Dictionary Server, namely the
Dictionary Databasewhich contains relevant diagnostic data andmakes them available to authorized
third-parties. Later, we present how existing projects can be improved and also new possibilities in
the vehicle diagnostic domain without the use of embedded super computers in vehicles, as some
manufacturers are already doing. The Dictionary Server could therefore be also compatible with cars
already dispatched on the market without an expensive recall campaign.

A Milestone for sustainable Remote Vehicle Capabilities 125

Chapter 8

Dictionary Database

Take the best that exists and make it better.
When it does not exist, design it.

– Henry Royce

Although the improvements in the automotive industry are almost IT only, OEMs aremoving towards
mobility services instead of producing only fancy vehicles to face up to competition. These mobility
servicesmust then be an integral part of the so-called smart cities or urban IoT. Therefore, the vehicle
as we know is becoming a Thing and should be able to communicate with other Things such as
diagnostic clients and road infrastructure among others. There are already existing solutions such
as V2V and V2X [Hasrouny et al., 2017, Kleberger, 2012, Siemens, 2015], but they are limited to
notification functions [Glas et al., 2014]. Use cases such as gathering vehicle data on the field for
instance can not be realized, data which value-added services can be built on.

On the other hand, remote capabilities require another generation of communication with
vehicles as they require not only to gather data from cars, but also to send commands to execute
on these objects. A good example is the new WLTP which is required by law from manufacturers
starting from September 2018 [EU, 2017a, EU, 2017b, EU, 2015, Yang et al., 2015] to reduce carbon
print of fossil fuels engines. These procedures require emissions values while driving in real
conditions on the field [Mock et al., 2014, ACEA, 2018]. Although the ISO norms published in
[ISO, 2008b, ISO, 2008a, ISO, 2012a, ISO, 2009] to harmonize a communication model within such
a heterogeneous ecosystem, remote functionalities can still not be performed1.

To fulfill such needswe proposed theDictionary Server in Chapter 7whose the general design,
discussed in Section 7.2, presented themain components of its logical architecture and how they are
connected with each other. In this chapter, we are going more in details with the design of one of
these components, namely the ODX Dictionary, also called the Dictionary Database, by presenting
its data model. The main purpose of this Dictionary Database is to harmonize the distribution and
sharing of ODX data while still protecting the manufacturers’ know-how and even to strengthen this
protection. But first, for the sake of understanding, we will start with relevant elements of the ODX
specification that are at the center of this distributed database design, in the same vein of what we
discussed in Section 2.3.

8.1 Core entities of the Data Model Design

Since this data model aims to capture diagnostic elements from the ODX specification normalized
in [ISO, 2008b], which an overview was presented in Section 2.3, our design is based on the
components discussed in Section 2.3.2 in compliance with the inheritance hierarchy between layers
illustrated in Section 2.3.3. Next, we discuss more in details some classes of the ISO 22901-1.

1Without an expensive and heavy equipment upgrade, functions such as remote diagnostic tasks are not possible.

A Milestone for sustainable Remote Vehicle Capabilities 126

Dictionary Database

8.1.1 Diagnostic Services

An ODX file contains a set of diagnostic services which are the description of messages or frames on
the communication bus. To understand the data model of the DIAG-LAYER-CONTAINER, a look at the
description of the diagnostic communication services (DIAG-SERVICE) is recommended.

Data structure of a diagnostic service

An overview is shown in the Figure 8.1. The DIAG-SERVICE is used to describe information necessary
to communicate with an ECU. To make possible the reuse of objects, they are connected to other
objects via XML references. A REQUEST object is used to describe the structure of the request
message. In case of no errors, the reply from control unit is a positive response message, whose
the structure is described by the POS-RESPONSE class. When an error occurs, one or more negative
response messages are generated towards the diagnostic device. Their description is specified by
NEG-RESPONSES [ISO, 2008b].

Figure 8.1: Data structure of the DIAG-SERVICE [ISO, 2008b].

Diagnostic Service Properties

A reference to a DATA-OBJECT-PROP object might be used for the conversion of physical to internal
values. Although it is possible to have only one set of DIAG-SERVICE in an ODX file, distributing
it over several hierarchical layers, called DIAG-LAYER (Figure 2.6) of the data model allows to avoid
redundancies [ISO, 2008b]. ADIAG-LAYER-CONTAINER it thenmade up one ormore DIAG-SERVICEs
which might span several hierarchical layers. For instance, the diagnostic service to read measured
values from control units covermanyBaseVariants and ECUVariantswithin the samevehicle project.
However, which measured values could be retrieved is determined by the control unit’s capabilities,
although the samemeasured value can be queried frommore than one control unit. Each diagnostic
service has an identifier (Service-ID), which is used as prefix on requests from the service.

The DIAG-SERVICE class has also boolean attributes IS-CYCLIC and IS-MULTIPLE. They refer to
the corresponding services, to a request and to responses, positives and negatives ones. IS-CYCLIC
indicateswhether the response data is sent repeatedly. For example, a diagnostic device can request
that the vehicle’s velocity is to be sent every second. The control unit then replies to such a request by
repeatedly sending responses where each one contains the current vehicle speed. The default value
of this property is false [ISO, 2008b]. By using some services, multiple messages can be expected as
responses to one request. In such cases, IS-MULTIPLE property is set to true. By default only a single
response message is expected. A timeout parameter might be used as a stop criterion. A use case

A Milestone for sustainable Remote Vehicle Capabilities 127

Dictionary Database

for the IS-MULTIPLE property is where DTCs are split up into multiple responses [ISO, 2008b]. There
is also the optional property TRANSMISSION-MODE2 that indicates how to handle the service. This
property has only four possible values [ISO, 2008b]:

• SEND-ONLY: a request message sent is not expecting any response;
• RECEIVE-ONLY: listening for a (positive) response without sending any request message;
• SEND-AND-RECEIVE: default mode, a request message sent is expecting a (positive) response;
• SEND-OR-RECEIVE: indicates that the value should be set to one of the previous at runtime.

The property ADDRESSING defines the addressing mode used by the diagnostic service. The only
valid values are FUNCTIONAL, PHYSICAL or FUNCTIONAL-OR-PHYSICAL whereby the default value
is PHYSICAL. The FUNCTIONAL addressing mode (discussed more in Section 8.1.2) means the
communication will take place through a functional address and a functional group, i.e. more than
one control unit could be targeted. When the value PHYSICAL is set, only one ECU can be addressed
via its physical address. The FUNCTIONAL-OR-PHYSICALvalue is usedwhen the two previousmodes
are supported. Although functional services can be overridden at the Base-variant or ECU variant
layer, functional address can only be used at the FUNCTIONAL-GROUP layer.

Parameter

Every request and response contains a set of one or many parameters described under the PARAM
class. The DOP (discussed shortly in Section 8.1.7) to convert an encoded value into a physical
representation and vice versa is referenced by aVALUE tag. There aremany types of parameters. Just
to mention a few, the type RESERVED is used when the parameter should not be interpreted and is
not for user’s display. CODED-CONST and PHYS-CONST are for constant coded and physical values
respectively, such as the service identifier. In a response, the former type can be used for verification
of the received value without converting it into the physical representation, while the latter should
be converted into coded value before appending it to a request, or used as a comparison basis after
the conversion of a response value. The type SYSTEM indicates that the interpretation depends on
runtime or on diagnostic device-specific information such as the device’s ID. But, within a response
the handling of parameters of this type is similar to the handling of parameters of type VALUE. The
meaning of a parameter could be specified by the property SEMANTIC [ISO, 2008b].

Request

In order to receive diagnostic values from control units, a diagnostic device should send at least one
request, labeled as REQUEST, to one or many ECUs. A REQUEST is made up of a set of PARAMs
presented in Section 8.1.1 which defines the request’s message. All bytes and bits of the request
data stream should be covered by at least one of the request parameters. But, all bits of the request
that are not explicitly defined by at least one request parameter keep the value 0, since the request’s
payload is initialized by bit with the value 0 [ISO, 2008b]. As example, the list of PARAMs of a request
might starts with the service identifier constant, followed by the ECU’s address and then completed
by the size of the whole message request.

Response

In most common cases after receiving a message request, an ECU sends back a message response,
tagged as RESPONSE. The ODX specification defined three types of responses, namely positive
(POS-RESPONSE), negative (NEG-RESPONSE) and global negative (GLOBAL-NEG-RESPONSE). Its
structure is similar to that of the message request [ISO, 2008b]. But it should starts with a response
identifier so that it could be match to a request. The interpretation of the whole message response
consists in decoding each of its PARAMs in the same order they are send back by the control
unit.

2Available in ODX 2.2+.

A Milestone for sustainable Remote Vehicle Capabilities 128

Dictionary Database

8.1.2 Functional addressing

This addressingmode is usedwhen a diagnostic device sends out a request on a dedicated functional
address and multiple control units might respond to the same request, analogous to a broadcast
message within a network. On the other hand, one diagnostic device might send a request to an
address that targets only one ECU on the bus: this mode is called physical addressing.

In functional addressing, all ECU’s responses could not have exactly the same structure. Some
might even send a multi-part response to a single request message. It should also take into account
that ECUs do not necessarily respond to the functional request using a physical response identifier.
They might respond using also a functional response identifier [ISO, 2008b]. As mentioned in
Section 8.1.1, only diagnostic services contained in a functional group and with addressing modes
FUNCTIONAL or FUNCTIONAL-OR-PHYSICAL can be executed functionally by opening a logical link
on such a FUNCTIONAL-GROUP. However, the functional request address must be supported by the
protocol intended to use. Therefore, the FUNCTIONAL-GROUP should inherit from a PROTOCOL
diagnostic layer. Additionally, one or multiple communication parameters (COMPARAM-SPEC) at
this PROTOCOL layer’s should be defined for the functional request address. These communication
parameters could eventually be overridden at the FUNCTIONAL-GROUP layer [ISO, 2008b]. Similarly,
functional response parameters should be inherited from the protocol. The COMPARAM-SPEC class
of the PROTOCOL layer needs to support a COMPLEX-COMPARAM object of CPTYPE with unique ID
which could also be overridden at the FUNCTIONAL-GROUP layer.

8.1.3 Logical Link

The first step of any diagnostic task consists in establishing a communication channel with an ECU.
According to the use case, this can be achieved through either a logical link or a physical link. The
former is a set of data (also called communication parameters) identifying the physical line, the
interface and the protocol used for interacting with a functional group of control units, while the
latter is the connection from the D-Server interface to one or many ECUs in the vehicle [ISO, 2008b,
ISO, 2009, ASAM, 2011]. ECUs might be logically regrouped under the same FUNCTIONAL GROUP
which is a logical set of ECUs sharing same or similar functions. For example, the functional group
“power train” can consist of an Engine Control Module (ECM) and a gearbox control unit. In addition,
the same control unit can be accessed via more than one logical link.

The correct logical link is selected by the D-Server at runtime. The communication parameters
values take also advantage of inheritance structure illustrated in the Figure 2.6. They can be
overridden in theDIAG-SERVICE and the diagnostic layer. Each diagnostic layeroverrides a parameter
with its specific values. In case of ambiguity, the DIAG-SERVICE-specific communication parameters
take precedence over the layer-specific ones. However, overridden communication parameters at
the FUNCTIONAL-GROUP level are not inherited in lower layers [ISO, 2008b].

8.1.4 ECU Job

A Job is a second type of diagnostic communication primitive next to diagnostic services. It is a
complex service that is not provided natively by the ECU, but shall be implemented manually on
top of the ECU’s native services. It is a macro with input and output parameters for recurring
complex tasks such as reading diagnostic trouble codes, algorithms for ECU’s memory programming
and so on. However, a job should not be used to describe complete diagnostic test sequences
[ISO, 2008b]. There are two types of jobs. The first type contains calls to services of only one
dedicated ECU (SINGLE-ECU-JOB). The second type spans multiple ECUs as it contains calls to
diagnostic communication primitives of many control units [ISO, 2008b].

In contrast to a SINGLE-ECU-JOB, the code of a MULTIPLE-ECU-JOB uses diagnostic
communication primitives of more than one control unit. At runtime, a MULTIPLE-ECU-JOB is not
bound to one logical link, but rather may open and close many logical links and communicate with

A Milestone for sustainable Remote Vehicle Capabilities 129

Dictionary Database

multiple ECUs simultaneously. An example of a MULTIPLE-ECU-JOB is the identification of a vehicle
where the job is to identify the vehicle model, the brand and the manufacturing year. Next to
functional services, multiple ECU jobs are another approach to communicate with multiple control
units. But, they do not use the functional addressing [ISO, 2008b].

The core aspect of a job is the program code. It contains all necessary data to reference a
specific piece of code that must be executed as the job. It is made up of a reference to the file
containing the code, the syntax of the code and the code revision number. An encryption algorithm
maybe optionally specified aswell as an entry point into a binary code or an archive. It is also possible
by a program code to import an library. This import is captured by the job referencing a LIBRARY
element [ISO, 2008b].

8.1.5 Diagnostic Trouble Code

The interpretation of DTCs received from control units is a core functional task during vehicle
diagnostics. A DTC may also have environment data. A DTC object contains the trouble code
itself read from the control unit, a text message to display to the user for this trouble code and
a level value ∈ [0; 255]. This level value describes the severity of the issue and can be used to
filter the DTCs during the diagnostic procedure. To be able to be reused, DTC objects may be
referenced from other diagnostic layers [ISO, 2008b]. For instance, all DTCs described in a base
variant control unit are visible in the ECU variant referencing it besides the ECU variant’s-specific
DTCs. A DISPLAY-TROUBLE-CODE can be used for the value to display for a DTC if it differs from the
numeric trouble code. It is also possible that not all DTCs are inherited in a lower diagnostic layer.
For such cases, the NOT-INHERITED-DTC-SNREF tag can be used to exclude unwanted DTCs from
the inheritance tree [ISO, 2008b].

A DTC might be attached to environment data under ENV-DATA-DESC which describes the
circumstances in which the error occurred. It is a complex DOP used to define the interpretation of
environment data where each ENV-DATA is a simple DOP. Since environment data could be defined
individually for each DTC, a reference to the response parameter is used to indicate a key, which could
be the trouble code itself in the PDU for instance. The structure of the environment message data
differs from one DTC to another. Therefore, many ENV-DATA objects might be referenced. Since
many DTCs can share the same environment data structure, more than one trouble code could be
specified for one ENV-DATA object. However, one DTC object can have only one specific ENV-DATA
object. It is also possible to define a set of environment data that is valid for all DTCs. To avoid
redundancies of these common data, a separate ENV-DATAwith a special propertyALL-VALUEmight
be used [ISO, 2008b].

8.1.6 Computational Method

Computational methods, referred as COMPU-METHOD, are required to convert the internal type to
the physical type of diagnostic values and vice versa. An internal diagnostic value is for example the
result of the extraction of a response parameter from the response message received from a control
unit. A computational method is applied to this internal value to get the physical value for a clear
text representation [ISO, 2008b]. Reversely, a physical value given by the user might be converted
into an internal value before sending it to a control unit. [ISO, 2008b] described eight categories of
computational methods:

• identical, the simplest category, where the input and output values are the same;

• linear which multiplies the input value by a factor and adds an offset;

• scale linear, similar to the linear category, its defines more than one interval as the domain of
the computational method and different calculations to use for each one;

• rational function, as the name speaks for itself, describes a rational function;

A Milestone for sustainable Remote Vehicle Capabilities 130

Dictionary Database

• scale rational function, defines several intervals similarly to the scale linear category, but
where a rational function apply in each one;

• text table, used for transformation of internal into textual values in one or many intervals;
• tab interpolated defines a set of points with linear interpolation between them consecutively;
• computational code is for cases where a computer program should do the computation.

Except for identical, text table and computational code, the following rational fraction is used for all
computational methods:

∀ x ∈ R, f(x) =

k∑
i=0

Vni · xi

m∑
j=0

Vdj · x
j

=
P (x)

Q(x)
, wherein Vni , Vdj ∈ R, x0 = 1 and Q(x) 6= 0 (8.1)

The case of linear computational functions corresponds to k = 1, m = 0. For invertible categories,
such as linear functions, the inversion is relatively straightforward and should be performed
automatically. For the invertible categories however, such as rational function or computational
code, a separate element for the inverse direction must be specified if necessary.

8.1.7 Complex Data Object Property

A diagnostic DOP contains data types for coded and physical format, constraints, computational
methods (conversion) and references to physical measurement units (Figure 8.2). A complex
diagnostic Data Object Property (complex DOP) is a composite of DOPs used to interpret complex
responses from control units (output values) or to define structured parts of a diagnostic application
request (input values). These input/output values contain multiple data items assembled in a
well-defined structure. Moreover, there is also a multiplexer used to interpret alternative data
depending on a switch-key. These data items andmultiplexers are required to interpret control units’
dynamic responses, since their size and actual structures are known only at runtime [ISO, 2008b].
They might be referenced by diagnostic services items from PDU requests/responses via fields such
as BYTE- and BIT-POSITION in the PDU structure. Complex DOPs are referenced by PARAMs as we
saw in Section 8.1.1. Unlike simple DOPs, a complex DOP could contain further PARAMs which can
also target a further complex DOP. To avoid an infinite recursion, every branch should end in a PARAM
leaf which points to a simple DOP or a DTC object [ISO, 2008b].

Figure 8.2: The DOP package [ISO, 2008b]. It is made up of simple DOPs that are used
to convert coded values into human readable format.

In some cases, the DOP to use for the interpretation of encoded value depends on the value
at a precise position in the PDU data stream. To cover such cases, [ISO, 2008b] allowed the use of
multiplexers under MUX, which are similar to switch-case statements. The position of the actual key

A Milestone for sustainable Remote Vehicle Capabilities 131

Dictionary Database

is described inside the SWITCH-KEY class. Then, the conversion of the key to its physical value is
performed via the simple DOP referenced by the SWITCH-KEY object. Theoretically, there is no limit
to be number of CASEs. Each of them defines a LOWER-LIMIT and a UPPER-LIMIT that enclose the
validity interval to match the key for interpretation within this interval. If a matching CASE can not
be found, then the optional DEFAULT-CASE is used if specified.

8.1.8 ECU Memory Programming

Besides reading values from ECUs, the ODX data description allows also the programming or
reprogramming of control units, which is a type of ECU Job discussed in Section 8.1.4. Also called a
flash procedure, this consists in downloading data stream to (or uploading data from) ECUs through
an opened session with the corresponding control unit. For these special cases, the ISO norm
22901-1:2008 defined a separate datamodelwithin the ODX specification. This datamodel, defined
under ECU-MEM, describes information such as the flash jobs, compatibility of data with control
units, and flash data itself. A single ECU-MEM object includes the description of memory of one or
more control units given by SESSIONs, DATABLOCKs, FLASHDATAs and PHYS-MEMs. Typically, an
ECU-MEM instance can be used only in association with the appropriate ECU job, the flash job in
occurrence. Therefore, an ECU-MEM instance and the corresponding flash job should be exchanged
together [ISO, 2008b].

Programming Session

A programming session is the only logical unit that can be selected for a flashing procedure.
It references the appropriate flash job responsible for programming and which datablocks are
programmed within this session. As a security measure, a checksum may be declared to perform
checks during the flash process. It is recommended to use the SECURITY class which defines specific
security information of thewhole session. This information can be used to check the integrity and the
authenticity of the programming data through e.g. checksumand signature. Since security details are
implemented within the flash job, any algorithm can be used according to designer’s requirements
[ISO, 2008b].

Datablock

A datablock describes the logical structure of a FLASHDATA object, i.e. a whole code section, a
single element like one calibration value, or a flash driver referenced by one or many SESSIONs and
which should be loaded before the (re)programming routine. Filters can be used to reduce the data
stream to transfer during the flash procedure. For more security, the datablock element might also
content encryption and compression methods of its data. Each DATABLOCK contains at least one
programmable part given either explicitly (by SEGMENTs) or computed from the address information
in the FLASHDATA source. A SEGMENT is a continuous data stream with a start and an end address.
Needless to say, address ranges of two different SEGMENTs should not overlap [ISO, 2008b].

Flashdata

The FLASHDATAobject contains the inline code or references to a file containing it. In the former case,
its references a DATAobject and in the latter a DATAFILE object is usedwhich is useful speciallywhen
the file’s content cannot be included into the XML file because of its size for instance. It contains also
the data format of the code to which it refers. An optional encryption and a compression method
might also be specified [ISO, 2008b].

A Milestone for sustainable Remote Vehicle Capabilities 132

Dictionary Database

Physical Memory

The physical memory (class PHYS-MEM) contains a description of the physical memory layout of a
control unit. Thismemory description could be required to checkwhether logical segments fits to the
physical segments. A programming job require properties such as memory start and end addresses,
block-size and fill byte for each physical segment. The block-size can be used to execute parallel
programming of memory sub-parts for better performance. A fill byte could be used to fill gaps
between logical segments if necessary. The start address indicate where to start the programming
job in the memory. The end address can be directly specified or derived from the size and the start
address [ISO, 2008b].

Memory Connector

A memory connector (class ECU-MEM-CONNECTOR) is used to associate a ECU-MEM to the
corresponding diagnostic layer on one hand, and the ECU-MEM to a diagnostic communication
primitive on the other hand. Nevertheless, the reference from the ECU-MEM-CONNECTOR is not
inherited between diagnostic layers, i.e. when a Base variant is referenced, the ECU variants derived
from it are not taken into account. To apply a SESSION to all the ECU variants derived from a Base
variant, the property ALL-VARIANTS-REF must be used. Otherwise, all control units associated with
a SESSION must be explicitly referenced [ISO, 2008b].

Programming procedure

The programming procedure consists in the following steps [ISO, 2008b]:

1. select a session in the memory connector;

2. read session’s data from the control unit memory;

3. check whether the control unit can be flashed;

4. load bound flash data files if necessary;

5. load the corresponding flash job from the diagnostic layer instance;

6. flash every data block which belongs to the selected session, as follows:

(a) check whether flash data already exists in the ECU; if it is already there, ask whether to
overwrite it;

(b) apply filters to FLASHDATA; if there is none, the whole data is used;

(c) apply SEGMENTs of the previous operation to the output;

(d) unlock the control unit to flash all selected segments of the DATABLOCK;

(e) write segments to the control unit in the order they are defined in the DATABLOCK or in
the order of their start addresses.

Upload process

Reversely, the upload process is a procedurewhere data is read from the control unit and thenwritten
into a file. It should be executed as follows [ISO, 2008b]:

1. select a session in the memory connector;

2. read information about the appropriate session object ECU memory;

3. load the corresponding job for uploading from the diagnostic layer instance;

4. read each DATABLOCK of the selected session using the addresses specified by the segments,
and store it in the file specified by this DATABLOCK.

A Milestone for sustainable Remote Vehicle Capabilities 133

Dictionary Database

8.1.9 ECU Configuration

Variant coding of a control unit is a procedure that allows the ECU software to be adapted to
a vehicle-specific (optional features, equipments and instrumentation) or a localization-specific
(country measurement units for example) environment. This procedure consists in enabling or
disabling a specific ECU’s function or setting a value for use by some ECU function(s). The variant
coding of a control unit is typically performed during the vehicle or the control unit production,
in the aftermarket for upgrading vehicle equipment and in a maintenance service environment to
replace defective parts for instance. The ECU-CONFIG class aggregates all required data for the
ECU configuration programming. It is also subject to inherit values such as authoring and versioning
information from other diagnostic layers [ISO, 2008b].

The ECU configuration information itself is stored under the CONFIG-RECORD element. This
class corresponds to a contiguous section of the control unit’s permanent memory. It connects the
data and their description on one hand and the control unit’s permanent memory and the diagnostic
services to manipulate these data on the other hand. Similarly to other data in the ODX specification,
configuration data can also be described in either physical or encoded representation or even a
combination of both. Many CONFIG-RECORDs can be aggregated into a CONFIG-DATA element. The
CONFIG-DATA is intended to encapsulate the configuration data description regarding a whole ECU.
Many CONFIG-DATAs can be combined into an ECU-CONFIG object [ISO, 2008b].

8.1.10 Library

Defined under the class LIBRARY, libraries are pieces of code that are not directly executed, but
rather are imported by another executable code such as an ECU Job or computational methods of
type COMPU-CODE for instance. They are attached to diagnostic layers to allowmultiple references
without redundancies. One LIBRARYelementmight provide additional information about constraints
when executing a job instance at runtime. For example, one element can define a set of libraries to
be used and the exact revisions and code-files of these libraries to use. Nevertheless, it is up to
the diagnostic application whether to execute a job when not all of its LIBRARY prerequisites are
fulfilled. Similar to the job’s properties, a LIBRARY instance has an encryption algorithm, a syntax,
the file code, the file’s entry point and also the revision number [ISO, 2008b].

After a overview of the most relevant parts for our topic, we discuss in Section 8.2 how
we designed a database to ease the implementation of remote capabilities in the automotive
industry.

8.2 Data Model of the Dictionary Database

To access to ECU’s communication data described in vehicle projects is one of the first and important
steps in vehicle diagnostic process. Fortunately, the ODX model description is an abstraction tiers
between control units and diagnostic devices, whichmakes the communicationwith ECUs diagnostic
hardware-independent. From the inheritance structure shown in the Figure 2.6, a tree data structure
could be derived as it offers a very good time complexity during data manipulation operations,
namely O(log(n)), where n is the number of the tree’s nodes3. Our data model is strongly based
on the structure illustrated in the Figure 8.3. Since the short-name is a required property on
every object in the ODX description, unless otherwise specified, all references between entities are
short-name-based in models discussed below.

3This time complexity is achieved when the tree is reasonably balanced.

A Milestone for sustainable Remote Vehicle Capabilities 134

Dictionary Database

Figure 8.3: Diagnostic layers hierarchy [ISO, 2009, ASAM, 2011]. Diagnostic services,
primitives and computational methods have similar hierarchical structure.

Communication with a ECUs’s vehicle is the beginning of numerous use cases. In our study, we are
interested in the vehicle diagnostic. This process could be divided into many tasks where the most
important are the query and translation of DTCs, the query of PDU requests, the interpretation of the
data stream responses from control units and the control units jobs. After some iterations through
an incremental development as suggested in Agile development practices, we built the following
data model. Let us start with its first element.

8.2.1 Data Model for DTCs translation

It is the first task of our case study. Described in vehicle projects archives, DTCs objects contains
the mapping of a trouble code to a human-readable text and environment properties. They could be
ECU-specific, but might also be related to a group of control units. An overview of the Data Model
to translate DTCs is depicted in the Figure 8.4. According to the implementation of the ISO norm
22901-1:2008, some diagnostic layers could not contain DTC objects. For instance, eventual DTCs
contained in the diagnostic layer ECU Shared Datamight bemergedwith the corresponding Protocol
layer instance for the sake of simplicity. The arrows represent associations similar to one-to-many
references in the data model. For instance, a Base Variant object is associated to one or many DTC
objects. The insertion and query operations should be performed via short-names prior to any other
criteria.

Figure 8.4: Data model for DTCs translation. The dashed lines represent classes that
may not exist according to the vehicle project.

A Milestone for sustainable Remote Vehicle Capabilities 135

Dictionary Database

8.2.2 Data Models for PDUs

This is the most important part of our study, since a diagnostic process basically consists in a
series of queries to and responses from vehicle’s ECU with conversion to and interpretation of data
stream between the diagnostic devices and control units. However, above all, the diagnostic device
needs the communication parameters from the logical links (Section 8.1.3). From the ISO norm
22901-1:2008, we extracted the Data Model for Logical Links illustrated in the Figure 8.5.

Figure 8.5: Data model for Logical Links. The Communication Parameters contains all
data required for a physical connection with ECUs.

After obtaining the communication parameters, the diagnostic devices needs the data stream to send
to the control unit. The first step4 of the conversion of a plain text request to a ECU-readable data
is described in the ISO norm 22901-1. For the use case of measured values queries, although the
samemeasured value may be provided bymore than one control unit, many values are ECU-specific.
Similarly to the data model for DTCs translation, we exploited the diagnostic layer hierarchy in the
Figure 2.6 to design the Data Model for PDU Requests shown in the Figure 8.6. Likewise as above,
the dashed lines represent objects thatmight not exist. The references between the class ECU Shared
Data and the other diagnostic layer classes are simplified for the sake of simplicity.

Figure 8.6: Data model for PDU requests. A PDU object is a pair of plain text request
and its corresponding hexadecimal value.

No matter if the ECU response to a PDU request is positive or negative, the physical data stream
must be interpreted. The interpretation procedure is the reverseway of the conversion of a plain text
request to a measured value query, i.e. the first interpretation step is done by the D-PDU API and
delivers hexadecimal values5. Then, these values are processed through calculations described in
each diagnostic layer similarly as above. We extracted the Data Model for Computational Methods
for this interpretation illustrated in the Figure 8.7. The class Formula is an entity which represents
a complex DOP and contains references to response’s structures6 and how to interpret each part of
the ECU response.

4The first step produces hexadecimal values, which are then converted into a data stream for the physical level.
5This step is normalized in [ISO, 2009].
6Response’s structures are designed to avoid redundancies and are not represented here to keep the figure simple.

A Milestone for sustainable Remote Vehicle Capabilities 136

Dictionary Database

Figure 8.7: Data model for Computational Methods. A Formula object is a complex
object encapsulating how to compute each part of an ECU response.

After computing the hexadecimal values coming from a control unit, scalar measured values must
be printed in a human-readable format with measurement units. Therefore, a Reference Table of
Units should be extracted from vehicle projects indexed by keyword or by short-name in our case
(Figure 8.8). The size of this table depends strongly on the measured values available in the vehicle
and grows as fast as manufacturers innovate with new capabilities. Finally, a clear text can be
returned to the client application with eventual measurement units.

Figure 8.8: Data model for Measurement Units. It is a reference table per project.

8.2.3 Data Models for ECU Jobs

In addition to send and receive PDUs streams, diagnostic devices can also run jobs on control units.
Depending to the task to perform, it could be a single or amultiple job. TheDataModel for (Multiple)
ECU Jobs we propose is illustrated in the Figure 8.9. Similarly as above, the arrows indicate a
one-to-many relationship and the diagnostic primitives are referenced by diagnostic layers which
they are specific to. An ECU Shared Data object references the libraries, encryption and syntax
required by the job(s). When the diagnostic device needs a communication channelwith one ormany
control units before running a job, it could get the necessary logical link(s) from the model discussed
in the Figure 8.5.

Figure 8.9: Data model for ECU Jobs. A Primitive object encapsulates the algorithms
and the ECU Shared Data points towards the required components.

A Milestone for sustainable Remote Vehicle Capabilities 137

Dictionary Database

8.3 Summary of the chapter

We presented in this chapter the data model we designed as the persistence tiers of the Dictionary
Server. To persist this diagnostic data in a datastore, we selected a tree-based data structure as it
offers a verygood trade-off between the space required to store the entities and query response time.
In the next chapter, we present the tools and patterns we used while implementing the prototype
as proof of concept of the Dictionary Server, its micro-design, its logical architecture and security
measures to prevent unauthorized access to the platform.

A Milestone for sustainable Remote Vehicle Capabilities 138

Chapter 9

Implementation

Knowledge has to be converted to action
or it is worthless.
– Tony Robbins

After discussing in Chapter 3 how to identify service boundaries during the design of a (monolithic)
system, the various inter-service communication concepts and technologies, the challenges of data
persistence in a MOA, how to build the service’s business logic easier and faster in an environment
shared by many developers, the testing procedures and guidelines, we provided necessary tools to
fulfill the functional requirements of the system to implement. However, there are are three more
non-functional capabilities to take into account before the production-ready release: the use of
security, configurability and observability patterns (briefly discussed in Section 5.1.1). The scope of
this work is limited to build a prototype in a well-controlled environment as proof of concept in the
field of vehicle communication for diagnostic in automotive industry. Though, we will step further
by discussing the previous quality features.

9.1 Security in a Microservice architecture

Whether the system is monolithic or built through the microservice architecture, security is a crucial
aspect to consider. But, the MOA has some impacts on how to apply the security policies in
applications. It is one of themain developer’s responsibilities to implement different security aspects
such as:

• authentication, where the identity of the incoming client is verified. This could be done by
checking its credentials, a secret key or a token for instance;

• authorization verifies whether the client is allowed to call the operation it requests. This could
be role-based or could use Access Control Lists (ACLs);

• auditing is for tracking client’s operations in the system to detect suspicious behavior, security
issues, to improve the user experience or to provide helpful information to customer support;

• secure communication between parties, whereby data should be encrypted to avoid
unauthorized access. For instance, the Transport Layer Security (TLS) should be used for data
exchange between services.

9.1.1 Authentication

To implement authentication and authorization features from scratch is very challenging. Moreover,
they are non-functional requirements, that means they should not absorb too much developers’
efforts (development best practice). Therefore, a well-known security framework should be
used according to the system’s technology stack. Spring Security [Pivotal, 2018b], Apache Shiro
[Apache, 2018c] and Passport [Auth0, 2018b] are some popular ones [Richardson, 2018].

A Milestone for sustainable Remote Vehicle Capabilities 139

Implementation

Usually, authentication in monoliths is session-based, i.e. a session1 (or a security context)
is created on the server side once the client has sent its valid credentials. The client receives then a
generated ID (or a token) that it should join to its next requests. By thisway, it does not have to send its
credentials each time it calls an operation on the server. An operation checks then the created context
which is shared in the whole monolith before it performs [Richardson, 2018]. Unfortunately, this
implementation of the authentication aspect cannot be used in aMOA,mainly for two reasons:

• the stateless property of microservices does not allow them to keep any client’s session;

• the autonomous characteristic excludes the fact that they share a common context2.

One solution is to implement this security concepts in the API gateway. As the unique central
endpoint of the application from the client side, it might also play the role of a proxy for other
services to the external world. Consequently, only authenticated requests are forwarded to the
corresponding service(s) for processing. With this approach, only one development team needs
to take care of this security aspect and the others do not have to bother themselves with it.
Moreover, different authentication mechanisms can be implemented in only one place and well
[Richardson, 2018].

9.1.2 Authorization

Implementing authorization also in the API gateway seems to be a practical solution for the same
reasons. However, this approach is coupling the API gateway with other services. For instance, in
a role-based authorization mechanism, when roles are updated, the services depending on these
changes must also be updated. In addition, ACL-based authorization policies are impractical to
implement in the API gateway. Not only the API gateway has to know in details the other services’
domain logic (which is against the autonomous principle of a service) [Richardson, 2018], but also it
makes the coordination of services more complicated to define. Authorization should therefore be
implemented in each microservice. It is even more flexible to define authorizations per endpoint or
permethod rather than for awhole domain object. Thismight be part of themicroservice chassis and
might use frameworks such as JSONWebToken (JWT) [Auth0, 2018a] or OAuth [Parecki, 2018]. But,
JWT are irrevocable. The only way to revoke a JWT-generated token is to define its expiration date.
On the other hand, OAuth not only fixed this issue, but also implements a proven security standard,
is transparent and token-based [Richardson, 2018].

9.2 Configurability of a Microservice

To emphasize the importance of this aspect, we just have to remember that a microservice might use
infrastructure capabilities and external third-party services (discussed in Chapter 3). For instance, a
service instance might require the service discovery function, a message broker, a mailing service
and/or a data store to perform properly. Because of the loose coupling principle, such connections
settings should not be hard-coded in a service, but rather externalized in configuration files. As a
result, a service can run in different environments without code modification, recompilation and/or
redeployment, which increases its portability.

There are twoways to provide externalized configuration values to a service instance at runtime
[Richardson, 2018]:

• the push model passes the configurations to the service instance through operating system’s
environment variables or configuration files for instance;

• in the pull model, however, the service instance reads itself the configuration values from a
configuration server.

1Commonly, a session timeout is also set.
2Even if the context is saved in a data store, this enforcemicroservices to share this data store, which not only is against

the principle of autonomy, but also breaks the rule of loose coupling.

A Milestone for sustainable Remote Vehicle Capabilities 140

Implementation

9.2.1 Push Model

The configuration values are supplied to the service during its instantiation by the deployment
environment. This could be done either by environment variables, by system properties, by
a configuration file, by command-line arguments or a combination of these value providing
mechanisms. However, the developer must handle properties collisions carefully by taking into
account the priority rules. One disadvantage is that the service reconfigurationmight not be possible
or requires to restart it beforehand. It is also possible that properties values might be required
at launch of several services [Richardson, 2018]. Therefore, it makes sense to centralize these
configuration properties in a common place.

9.2.2 Pull Model

A configuration server is required to implement this mechanism. At launch, the service retrieves the
configuration values from it before starting. How to connect to this configuration server is provided
through the push model discussed in Section 9.2.1. Fortunately, the configuration server can be
implemented using a versioning system, a database or a specialized frameworks such as Spring
Cloud Config Server [Pivotal, 2018b] or Hashicorp Vault [HashiCorp, 2012] which handles sensitive
configuration values such as credentials [Richardson, 2018]. This configurationmechanism provides
a centralized place to save properties values. They are hence easier to maintain and allow the
definition of global default values. Moreover, the decryption of sensitive data could be performed in
one place before forwarding it, so that encryption keys do not have to be shared to service instances.
Also, a service could be reconfigured without a mandatory restart [Richardson, 2018].

9.3 Observability of a Microservice

When a system is running, it is crucial to keep an eye on how the resources are used, what the
application is doing, its load percentage, its logs and so on. Monitoring an application is very
helpful as it allows to be notified when a problem occurs so that the team in charge can detect and
troubleshoot the cause by reacting accordingly and quickly (Figure 9.1). Even when many aspects
of administrating a production system are out of developers’ responsibilities, they must implement
services that are easy to manage and diagnose. Fortunately, there are patterns allowing to expose
the service’s health, to track and visualize the service state, to produce alerts and notifications when
a problem arises. Following are some of the most important ones.

Figure 9.1: Some observability patterns. They allow to monitor and understand the
service’s behavior and troubleshoot problems.

A Milestone for sustainable Remote Vehicle Capabilities 141

Implementation

9.3.1 Health Check API pattern

This is one of the most important observability patterns. For instance, a load balancer should be
aware of running and available services to route requests meaningfully (it does not make any sense
to forward a request to an instance that failed). Also the service registry should know if an instance
is unavailable to trigger eventual fallbacks. This pattern is responsible for providing the service’s
health state through an endpoint. It also allows to generate an alert when a service instance is
down. However, it is up to health check clients to make periodic calls to this API to receive status
such as connections to infrastructure services, the instance’s workload, the memory space used and
so on.

Some frameworks offers default implementations of this pattern. But, a running instance
might not be ready to handle an incoming request. For instance, a freshly started service might
need few seconds to be able to reply to a request. Or, an instance might loose connection to
an infrastructure service during its execution. In such cases, the default implementations of this
pattern are not reliable enough for a productive environment. Therefore, it is recommended to
extend the default implementations of the health API to adapt them to each service-specific context
[Richardson, 2018], which requires some extra efforts from developers.

9.3.2 Log Aggregation pattern

When an application behaves as it should not during its execution, logs data are one of the
best places where to start to look into for troubleshooting. But, since a request can span
many services, analyzing the logs of each one separately might be tedious and even inefficient.
One solution consists in aggregating these logs in a central logging server as proposed in
[Richardson, 2018]. This central component might yet allow graphical visualization, text search
and setting alerts to trigger under predefined conditions. Developers should also pay attention
on how to generate logs in each microservice. An unstructured set of text data is difficult to
analyze, might also be useless to aggregate and impossible to generate convenient graphical views
by the logging server. Hence, developers should use logging libraries to produce well structured
service’s log data [Richardson, 2018]. Some logging servers are Apache Flume [Apache, 2018a],
Fluentd [Fluentd, 2018] and Logstash [Elasticsearch, 2018]. However, developers are responsible to
integrate such a tool in their services through an externalized configuration for example as discussed
in Section 9.2.

9.3.3 Distributed Tracing pattern

In some cases, logs analysis is not enough to detect issues such as a slowdown during the processing
of requests. As example, when a request is processed by multiple services, logs data might provide
the global response time, but do not allowto identify preciselywhich one(s) in theworkflowhas(have)
a breakdown time. One solution could be to assign to each external request a unique identifier that
will flow through the system along with the corresponding request. Then, each service will include
this identifier in its logs data and the time it took to handle the request [Richardson, 2018]. By this
way, the reply can be traced across the microservice-based application and the behavior easier to
analyze. Moreover, it offer a better overview on how individual requests are processed during their
course throughout the services involved. This pattern is already implemented by some frameworks
such as Spring Cloud Sleuth [Pivotal, 2018b], ZipKin [OpenZipkin, 2018], OpenTracing [CNCF, 2018c]
and AWS X-Ray [Amazon, 2018b] just to mention a few.

9.3.4 Application Metrics pattern

Similarly to the health check API pattern, production environment critical values should bemonitored
and alerts generated when a problem occurs. Not only at the application-level, but also at the
infrastructure-level and other parts of the technology stack (frameworks, language runtime, etc.).

A Milestone for sustainable Remote Vehicle Capabilities 142

Implementation

Metrics to collect span from memory and disk utilization, CPU workload to request latency and the
number of requests handled by each service. These metrics are aggregated by a central service,
which provides visualization and alerting features. Micrometer [Pivotal, 2018a] is one example of
libraries to collect service-level metrics. Developers have only to import and configure it according
to values to gather. Then, these metrics could be delivered either via [Richardson, 2018]:

• the push model, where each instance sends its metrics to the central server, such as Amazon
CloudWatch [Amazon, 2018a];

• the pull model, as it is up to the central metric server, such as Prometheus [Prometheus, 2018],
to call the corresponding APIs to gather the service metrics.

9.3.5 Exception Tracking pattern

Programs are rarely (or even never) exempted of bugs. A failure might also be due to an external
interaction with the system. Whenever an error occurs, an exception is usually thrown, either
programmatically by the application itself or by the environment where it is deployed. However,
exceptions should not reach the end user, but rather be written somewhere accessible by the
developers – in logs for instance – to help to identify the cause. The log aggregation pattern allows
even to configure the logging server to notify the developers when an exception arises. Still, to
inspect the log files to troubleshoot an issue has some drawbacks: the tracking of the resolution of
an exception is very difficult and expensive, since it is done manually and there is no mechanism to
automatically detect duplicate exceptions [Richardson, 2018].

One way to solve these problems consists in using a central exception tracking service. Via a
compatible client library, each microservice should then report its exceptions to the tracking server,
which is responsible to remove duplicated exceptions, to generate notifications or alerts and to
keep records of exceptions life cycle [Richardson, 2018]. Some tracking solutions are Honey Badger
[HoneyBadger, 2018] and Sentry [Sentry, 2018]. Though, the developers should keep in mind during
the implementation that this is an additional infrastructure component to interact with in their
code.

9.3.6 Audit Logging pattern

In some cases, it is very helpful for developers to know the context in which an error occurred. For
debugging purposes for example, it might then be necessary to reproduce exactly what the client
did to trigger a failure. To meet such requirements, developers should take into account to keep
records ofwho is using theirmicroservices, what happens during the handle of requests and inwhich
service’s conditions. One solution is to implement the audit logging pattern, which as mentioned
in Section 9.1, allows to track the users’ actions in the system to understand their behavior and
to troubleshoot issues easier. An audit log entry should consists of the client’s identifier, what it
executed, which objects it manipulated, the results it received and the output of the service involved
[Richardson, 2018].

Developers have three ways to integrate this pattern into their application. The simplest
one consists in interweaving the audit logging logic with the mircoservice’s business logic. In
this case, where to add the audit code is left to developers’ discretion. This approach not only
reduces the maintainability of the service, but also is error-prone. A second approach is to use
the Aspect-Oriented Programming (AOP) through a framework [Richardson, 2018]. By this way, the
developer have to definewhich calls to service’smethod should be intercepted and save them in logs.
However, since the interception is only possible at a class- or a method-level, it might be tough to
retrieve the state of business objects that were used. The event sourcing discussed in Section 4.2
is also a good approach, since this mechanism cover the storage of the sequence of (business)
objects’ changes. But, it cannot track the data-store queries that are executed [Richardson, 2018].
Consequently, as recommendation, developers should use a wise combination of these three audit
logging mechanisms.

A Milestone for sustainable Remote Vehicle Capabilities 143

Implementation

9.4 Dictionary Server Micro-design

Wediscussed the general design of the Dictionary Server in Chapter 7wherewe presented its various
parts, namely the extractor, the database, the set of services and the communication interface. In
Chapter 8, we proposed a data model of the Dictionary repository, which is essentially a tree-based
data structure that capture the inheritance hierarchy between the diagnostic classes. This section
presents more in details the components just mentioned and some development constraints related
to the context. But, it is important to present the general structure of each service we used and that
we recommend.

The smallest constitutive unit of such a system is a microservice. It is made up of many logical
parts for the sake of maintainability as illustrated in the Figure 9.2. They are:

• controller: it is the entry points of every service.
• selector: receive value objects from the controller and is the place where collaboration with
other services takes place;

• business logic: the service’s core is implemented here. After processing data objects from the
selector, it sends entities to the repository manger;

• repository manager: this component is responsible to persist entities to and retrieve them
from the data-store.

Figure 9.2: The microservice internal structure. Classes exchange runtime objects till to
the persistence layer.

9.4.1 Controller

This class (or set of classes) offers endpoints to the outside of the service boundaries. Similarly as in
the MVC architectural pattern, such classes interact with incoming requests to retrieve input value
from clients and handle the return data format of the response (deserialization and serialization).
Each endpoint is matched to one of its public method, also called action method, which is triggered
when the API is called. After deserializing the incoming data, the controller might perform some
data validation before creating the corresponding value objects to pass to the selector. Some logic
such as context initialization or creation of temporary data might also be part of a controller class.
During the response phase on the reverseway, it extracts the requested values from the data received
from the selector, formats them accordingly and serializes the object back to the client (Figure 9.2).
Some elements of the microservice chassis such as the control of user metrics or the validation of
security tokens might also be implemented here. We recommend to perform these utilities tasks
upstream, so to not bother other service’s elements with invalid input data. Unnecessary method
calls are therefore reduced and potential exceptions also avoided.

9.4.2 Selector

As its name speaks, this type of class must select the method(s) of the business logic to call for
handling the incoming request. But before that, since a service may eventually cooperate with
another one, the selector should check the availability of its dependencies (infrastructure) and

A Milestone for sustainable Remote Vehicle Capabilities 144

Implementation

other services it needs. Then, based on value objects received from the controller, it prepares the
required context for calling its collaborators through the API. Next, the selector might process the
response of its collaborators, juxtapose it with some elements of the value objects before and build
business objects (also called domain objects) to forward to the next component – the business
logic, Figure 9.2. After the business logic processing, it parses the domain objects and reply to the
controller. Another collaboration call might also eventually take place here again to complete the
response to send back to the controller. In this case of collaboration, the selector communicates
with the other service through its external end-point connected to its controller (Figure 9.3).

Figure 9.3: Collaboration of a microservice with other services.

9.4.3 Business Logic

Also called domain logic, this type of class captures the real-world domain rules that describe how
domain data3 are manipulated and transmitted. At this stage, all conditions are supposed to be
fulfilled and required input data well-formed and provided. This core component in collaboration
with the repository manager, processes the domain objects to propose a reply to incoming requests.
Repository managers and business classes should exchange solely entity objects (Figure 9.2). Client
frameworks for observability patterns such as the log aggregation or exception tracking might also
be integrated here.

9.4.4 Repository Manager

In the case when the service must interact with a persistence layer, the repository manager should
encapsulate all the Create, Retrieve, Update, and Delete (CRUD) operations. This manager is even
a good place to implement the CQRS pattern discussed in Section 4.3.2. This component is an
abstraction of the underlying database technology, which makes the microservice loose coupled to
a particular DBMS, which therefore increases the microservice’s portability. After receiving entities
from business classes, the repositorymanager converts them into the appropriate technology based
on the externalized configuration values for instance, before sending them to or retrieving them from
the database (Figure 9.2).

One benefit of such a design is a better overview of each service. In case of an exception, the
debugging is easier since the developer is better guided to the component that failed. However, client
frameworks for observability patterns should be imported in all these components, which increases
the code complexity. Next, we discuss the macro-design of the Dictionary Server in the following
section by presenting some of the few services we implemented.

3Microservice decomposition is discussed in Section 3.2.

A Milestone for sustainable Remote Vehicle Capabilities 145

Implementation

9.5 Dictionary Server Logical Architecture

As discussed in Chapter 7, precisely in Section 7.2, the Dictionary Server is made up of many
components. Amongst them, this section will focus on the Dictionary Service and the Dictionary
Communication Interface also called the Dictionary Gateway. The former consists of microservices
that extract relevant diagnostic data from the ODX files (vehicle projects), while the latter is solely
the Dictionary Gateway (Figure 9.4). It is worth mentioning that the extraction of the diagnostic
data from vehicle projects is performed without a MVCI runtime server instance. We made this
choice due to its limitations discussed in Section 2.6.2. Nonetheless, the standardized runtime
communication process remains still applicable.

Figure 9.4: An overview of the Dictionary Server’s Macrostructure. Non-functional
constraints and best practices such as Microservice chassis and Observability patterns

are left apart for the sake of clarity and simplicity.

9.5.1 Dictionary Service Architecture

This component is the set of variousmicroservices plus the gatewaywithout the project downloader
microservice. As discussed in Section 3.1.2, each one has its own independent data-store. However,
there are crucial serviceswhose outputs are necessary before triggering other services. For instance,
it does not make sense to query how to retrieve the engine coolant temperature when the ECU
to interact with is not determined yet, or even when the communication parameters must still be
queried. Hence, we start with the core services.

Core Services

A look back to the Figure 2.11 allows to identify the following essential boundaries:

• logical linkswhich contain information about (logical) connections with each control unit. This
data is crucial, since the next steps of the communication procedure are based on it;

• requests, i.e. the measured value-based (hexadecimal) data-streams to send to a ISO
22900-2-compliant device, such as a VCI so it can be converted into streams of bits to send
directly to the control unit;

• computational methods are the set of procedures on how to decode/interpret into a
human-friendly format the (hexadecimal) responses from a ISO 22900-2-compliant device
after a query was sent. It could be a rational function or just a text ID that should be used
to look for the corresponding clear text;

A Milestone for sustainable Remote Vehicle Capabilities 146

Implementation

• measurement units gather all the units of physical quantities that can be measured within a
vehicle project. After the computation above, a unit from this microservice is juxtaposed to the
measurement value if necessary. Eventual conversion into standard international units might
also belongs here.

Extended Services

Another important diagnostic functionality is the decryption of DTCs. This use case is a special case
of reading measured values. There is no measurement unit to look for, but rather only IDs from
control units to find the matching the clear text to. A DTC interpreter service should therefore keep
a connection to a reference table that match IDs to corresponding text in languages supported by
the manufacturer.

A diagnostic session might also consist in writing mode requests, i.e. those that modify the
control unit’s state. One example could be the erasure of DTCs of a control unit, the modification of
the headlamps angle or the interior lights of the vehicle. Consequently, besides the services above, a
libraries service is required for such ECU configuration tasks. This service will contains the necessary
libraries to alter each control unit.

For more advanced tasks, such as ECU memory programming and ECU Job, we need the
programming and the job services respectively. The formerwill store thememory flashing procedure
which consists in the required libraries, how to create and close a flash session, the flashdata and the
memory addresses where to make modifications. The latter will contains various algorithms per
control unit for all writing-mode tasks and their appropriate execution context.

Interaction with Infrastructure Services

Each service uses infrastructure dependencies such as the Service Discovery, one NoSQL Database
and the Logging Service4. The members of the Dictionary Service are not connected to each
other, but only to the Dictionary Gateway. This god service is responsible to coordinate the
collaboration between the others to perform the workflow similar to that of Figure 2.11. The most
appropriate communication mechanism for the Dictionary Gateway to interact with other services is
a orchestration-based collaboration style we described in Section 4.2.4. This is due to the fact that
the standardized process is a well-ordered sequence of steps wherein each needs the results of the
previous to be launched. They cannot be performed independently or in a parallel way5 for the same
given measured value towards the same control unit.

9.5.2 Dictionary GatewayArchitecture

The Dictionary Gateway coordinates the journey of a request through the Dictionary Server by calling
the appropriate microservices in a well-defined sequence. The endpoints to call are retrieved via
a platform-side service discovery style that we described in Section 3.5.2. Thus, this component
defines the only APIs accessible by external diagnostic clients (Figure 9.4). By applying the gateway
encapsulationmechanism, external clients do not have to be aware of the complexityof theworkflow
necessary to retrieve the complete PDU request to read the Air Flow Rate frommass air flow sensor,
the control unit to interact with, its communication parameters and themeaning of the hexadecimal
values returned by the ECU (see Section 3.3.3) for instance.

According to the ISO norm 22901-1 [ISO, 2008b], diagnostic components in the ODX
specification must have a unique short-name6 per vehicle project. These so-called diagnostic
components go from physical address segments to ECU jobs including measured values, diagnostic
layer classes, computational methods, control units themselves and logical/physical links to name

4Due to prototyping purposes, we limited the infrastructure services to use, although many more were available.
5The parallel interaction with many ECUs within the same vehicle depends on definition of logical links [ISO, 2008b].
6The ODX specification allows also components to be referenced by others that do not explicitly have a short-name.

A Milestone for sustainable Remote Vehicle Capabilities 147

Implementation

just a few. However, it is up to each manufacturer to decide how to designate its XML elements. As
result, a measured value (amongst others) might be uniquely identified by a string – the short-name
– different from its human-friendly nomenclature. For example, AirCondiPress and Air conditioner
pressure might designate the same measured value to retrieve the pressure of the vehicle air
conditioner. On one hand, to ensure the bijectivity while searching a measured value, the query
must be short-name-based. On the other hand, since diagnostic clients do not have to knowwhich
short-namesmanufacturers have selected in their vehicle projects respectively, the conversion of the
human-friendly measured value’s name into the corresponding short-name should be performed.
Upon receiving a request, the Dictionary Gateway takes care of this conversion when necessary, well
before launching the standardized diagnostic process illustrated in the Figure 2.11.

9.6 Dictionary Server Security Measures

In a MOA, every service can theoretically be available for or reachable by any external client.
This openness might be a security loophole for the whole system unless security measures are
implemented in all of them. Leaving to each service the responsibility to implement themselves
these security measures might be sustainable when the system has very few services. But with
a dozen or more, this is not only error-prone, but also tedious for developers. It is therefore
recommended to centralize such critical non-functional requirements in theAPI gateway for instance.
Alongside the securitymeasures discussed in Section 9.1, one solution could consist in the separation
of network in zones. The Dictionary Gateway will hence be the only component with a public
accessible IP address, while the others will be deployed in a private network as illustrated in the
Figure 9.5. The authentication and authorization securitymeasures and a control access policymight
be implemented in a Directory Gateway associated to the Dictionary Server. A Proxy server and a
Firewall might also be used to strengthen the system security (Figure 9.5).

Figure 9.5: The Deployment Architecture. Only the API Gateway is publicly available.
The infrastructure is responsible for requests routing towards the private network.

A Milestone for sustainable Remote Vehicle Capabilities 148

Implementation

9.7 Summary of the chapter

We started this chapter with implementation guidelines and tools to fulfill non-functional
requirements of the the solution, namely the the Dictionary Server. Then, we presented the
fine-grained design of it, its logical architecture and the security measures we put in place to ensure
system and data security. This chapter also concludes the design phase of our software architecture.
In Chapter 7, we described our general design of the business tiers and the workflow of data
during a vehicle diagnostic session. In Chapter 8, we presented the data model of the Dictionary
Server’s persistence tiers with its building blocks known as entities or data objects. In the next
part, we start in Chapter 10 with a description of the environment, tools and technologies we used
to implement the prototype on the server side on one hand, and how diagnostic applications can
interact with the Dictionary Server on the other. Then follows the Chapter 11 with the tests and
results of our prototype, a comparative study against existing vehicle communication systems, a
rigorous evaluation of its quality attributes, an evaluation of the objectives of this research work and
a discussion about other usages of the Dictionary Server.

A Milestone for sustainable Remote Vehicle Capabilities 149

Part IV

Development, Tests & Results

A Milestone for sustainable Remote Vehicle Capabilities 150

Chapter 10

Development environment

Wewould have to start from scratch
to do it right.

– Eric S. Yuan

To validate our concept, we are required to build a prototype of the Dictionary Serverwith use cases in
vehicle diagnostic. To achieve this, we used many tools in a well-defined development environment.
In this chapter, we start with tools and technologies for implementation of the server side i.e. the
Dictionary Server itself. Then, we discuss use cases in read-only diagnostic services with an Android
application as client as an example of how the client side might look like, i.e. either mobile- or
web-based diagnostic application. However, the focus was to implement a proof of concept.
Therefore, the use of most up-to-date technologies in software engineering and programming was
not a priority.

10.1 Parallel computing

10.1.1 Definitions

A computer software or an algorithm is usually written for serial computation on a CPU, i.e. one
instruction is executed after another only one at a time. Till 2004, the enhancement of computer
performance was leaded by frequency scaling, also know as frequency ramping, which consisted
in increasing the frequency of a single processor (vertical scaling) [Flamm, 2018]. To deal with
the power wall problem, the manufacturers started from there to produce multi-core processors,
whereby each core is independent and accesses to a shared-memory concurrently. That brought
parallel computing to commodity computers and software engineers started to re-design serial
programs for parallelization (horizontal scaling).

Parallel computing is a type of computation where many (possibly related) calculations
are executed simultaneously [Almási and Gottlieb, 1989]. The parallel programming model is
an abstraction of the parallel computing for simultaneous execution of algorithm’s instructions
[Skillicorn, 1991]. This is possible only by using more than one (core) processor simultaneously
to complete one task. The task’s instructions must have some degree of independence to be
parallelizable, i.e. to keep a consistencymodel whereby the order of execution does not matter. The
consistency model defines how operations manipulate the memory and how results are produced
[Lamport, 1979].

10.1.2 Types of parallel programming models

Parallel computing is frequently related to concurrent computing, although they are distinct. In
concurrent computing, several calculations are executed during overlapping time periods, whereby

A Milestone for sustainable Remote Vehicle Capabilities 151

Development environment

a calculation can continue without waiting for all others to complete [Silberschatz et al., 2012].
Parallelism can be implemented without concurrency, and concurrency without parallelism as in
multitasking with time-sharing on a single processing unit. In parallel computing, a computational
task is divided into several (similar) sub-tasks that can be executed independently and whose results
are combined afterwards upon completion. In concurrent computing on the other side, the various
instructions often do not address related tasks. When they do, the separate tasks often require a IPC
procedure during execution [Pike, 2012].

There are usually two main parallel programming models [Silberschatz et al., 2012]:

• the data parallelismwhich focuses on distributing the data as independent and disjoint pieces
across different processing cores calculating the same set of instructions in parallel. This type
of parallelism is suitable for operations on regular data structures such as arrays and matrices
(addition of array’s elements – Figure 10.1 – or multiplication of two matrices for example);

• the task parallelism, also called functional parallelism or control parallelism, shifts the focus on
distributing distinct processes or execution threads across several cores. When they operates
on same data, this type of parallelism needs a type of IPC (Figure 10.2). One common
implementation is the data pipelining, whereby the output of one thread is the input of the
next.

Despite the separation of the strategies above, few programs implement strictly one or the other.
They usually make the use of a hybrid combination of these models [Silberschatz et al., 2012].

Figure 10.1: Parallel addition of the elements of a n-elements array. They are added in
pairs by independent threads in each iteration till to the final onem = log2(n).

There is a third model, namely the implicit parallelism. This model allows the compiler to
automatically exploit the inherent parallelization mechanisms of the programming language. A
language that supports pure implicit parallelism does not require special directives or functions to
enable parallel execution of algorithms. One of its benefits is that the programmers do not have to
handle the distribution of instructions and data across several processing cores and IPC mechanisms
[Nikhil and Arvind, 2001]. This eases the design of programs, adding more clarity and simplicity
to them. It also allows the developers to focus on the problem to solve. However, this model
limits the programer’s oversight on the algorithm execution, which could lead to less-than-optimal
efficiency in some cases. Moreover, it makes the debugging more difficult. In addition, since in
practice, most programs have a serial part that cannot be parallelized, it requires explicit constructs
from the language [Nikhil and Arvind, 2001] to inhibit the automatic parallelization on such pieces
of code.

A Milestone for sustainable Remote Vehicle Capabilities 152

Development environment

Figure 10.2: Parallel execution of an algorithm. Only the parallelizable part can be
distributed across several processing cores. In this type of parallelization, an IPC

mechanism might be necessary.

10.1.3 Not every algorithm is parallelizable

To take full advantage of themulti-core architecture, the programmersmust redesign and parallelize
their code. As already mentioned, the improvement of application’s execution time through vertical
scaling is not practicable anymore since more than a decade. Enhancements in software computing
is now focused on the horizontal scaling by taking advantage of the increasing computing power
of multi-core architectures [Rauber and Rünger, 2013]. Ideally, the speedup of a program through
parallelization would be linear, i.e. doubling the number of processing cores should halve its
execution time, and doubling it once more time should then halve this runtime again. Or more
generally, when an algorithm is distributed among n processors, it would be completed in 1/n units
of time, i.e. in an n-fold speedup factor.

But, few algorithms can achieve this optimal speedup. Most of them follow a near-linear
speedup pattern with few processing units, which flattens out into a constant value as the numbers
of processing units increases [Amdahl, 1967]. This phenomenon is formally described under the
Amdahl’s law, also called strong scaling, which is illustrated in the Figure 10.3. The curves represent
how the speedup capacity depends on the percentage p of the algorithm which can be parallelized
and the number of processing units in action. It shows that if only the half of the algorithm
can be parallelized, its execution time would be halved at the most (maximum speedup reached
from approximately 28 processing units). On the other hand, when 95% of the algorithm is the
parallelizable part, the maximum speedup factor 20 is reached with 216 processing units.

10.1.4 Weak scaling

More than twenty years after the public release of the Amdahl’s law, [Gustafson, 1988] proposed
another look into the parallel computing area. It noted that the parallel part of a program
scales with the problem size, while the serial part remains constant or varies slowly. As an
approximation, the bigger is the computation, the smaller is the percentage of the serial part.
Therefore, the parallelizable work grows linearly with the number of the processing cores. These
observations leaded to the Gustafson’s law, also known as Gustafson-Barsis’s law or weak
scaling [Willmore, 2013, McCool et al., 2012, Gustafson, 2011, Gustafson, 1988]. It describes the
theoretical speedup of an algorithm at fixed workload that a system can produce with more
resources. Some instances of how the speedup factor is impacted by the parallelizable part of an
algorithm is illustrated in the Figure 10.4.

A Milestone for sustainable Remote Vehicle Capabilities 153

Development environment

20 22 24 26 28 210 212 214 216 218
0

2

4

6

8

10

12

14

16

18

20

Number of processing cores

Sp
ee
du
p
fa
ct
or

p = 95%
p = 90%
p = 75%
p = 50%

Figure 10.3: A graphical representation of an instance of the Amdahl’s law
[Amdahl, 1967]. The serial parts of an algorithm limit its parallel effectiveness.
According to this law, with p = 95% of the computation parallelizable, better than

20-fold speedup is not possible.

20 22 24 26 28
0

10

20

30

Number of processing cores

Sp
ee
du
p
fa
ct
or

p = 95%
p = 90%
p = 75%
p = 50%

Figure 10.4: A graphical representation of an instance of the Gustafson’s law
[Gustafson, 1988]. Usually, the parallel part of a computation task increases as the

problem growths while the serial section remains almost unchanged.

10.1.5 Strong vs. Weak scaling

Some problems do not have tomanipulate large datasets. When the computation task is fixed-size, it
will use all the available processing units to their capacity for better efficiency. The task’s workload is
then distributed across several cores and the execution time is reduced. But, programs are becoming

A Milestone for sustainable Remote Vehicle Capabilities 154

Development environment

more and more sophisticated to solve larger problems [McCool et al., 2012]. The Gustafson’s law
enables to process more datawithin almost the same timeframe. A comparison of the two principles
is illustrated in the Figure 10.5. Both philosophies take advantage of the horizontal scaling, with
the second fitting more the historical trend in software engineering. However, locally inefficient
algorithms can be globally efficient when they reduce the sequential phase. Moreover, in order to
hold the weak scaling, it is crucial to ensure that the serial part evolve very slowly than the parallel
counter part [McCool et al., 2012], including the other overhead operations.

(a) Fixed computation. (b) Fixed workload per core.

Figure 10.5: Amdahl’s law vs Gustafson’s law [McCool et al., 2012]. The former is
applicable for “static” work computation while the latter is for growing computation

tasks where the maximal workload per processing unit is fixed beforehand.

10.1.6 Reality might be even worse

In practice, computational tasks do not follow the laws mentioned in previous sections. Firstly, the
real-world parallel computing require a load balancer or a master processing core. It role consists in
distributing the task and assigning each piece to the corresponding slave processing unit. Although
this mandatory part of the execution time might be negligible in some cases, it is not zero. This
phase is called waiting phase [Woodard, 2013, Willmore, 2013]. The master processing core is
also responsible to collect the results from all the slaves and merge them into the final result.
Secondly, the hardware architecture plays an important role. Whether it is a shared memory or
a shared-nothing or even a time-sharing mechanism on the processing unit (multithreading), the
scheduling time on shared resources has also a significant impact on the task’s execution time.
Thirdly, there are also the communication costs between the processing stakeholders. These are
particularly relevant in resource-shared architectures. In addition, there is also the waiting time to
handle the data inputs and outputs to and from the processing units. Moreover, parallel computing
is not a panacea in software engineering. An inefficient parallelized portion of an algorithm may
jeopardize its whole efficiency compare to when it is executed sequentially.

10.2 What if...

After discussing the various technologies and philosophies for business logic implementation, it
is also worthwhile to discuss how DBMS philosophies impact the system. As a matter of fact,
the time and space complexity of the persistence tiers has significant repercussions on that of
the whole system. In this vein, we discuss in this section the various computation complexities
of DBMSs presented in the Chapter 6 each taken separately. In the following section, we will
discuss the time complexities of the fourmain data searchmethods designed in the task coordinator,
namely the retrieval of the measured value’s ID, the search of the correct logical link, the retrieval
of the instructions required for the vehicle communication and the retrieval of the corresponding
computational method. Since the identification of the vehicle project is based on a mapping table,
the time complexity is O(1) no matter which one of the DBMSs is used.

A Milestone for sustainable Remote Vehicle Capabilities 155

Development environment

10.2.1 ... we used a RDBMS?

Startingwith the relational model, we discussed its benefits and limitations in details in Section 6.2.4
and Section 6.2.5. As relational model uses join-statements to manipulate data across relations
on one side, and the data structure in vehicle projects is based on an inheritance hierarchy on the
other side, the retrieval of information is resource-intensive, burdensome and difficult to scale.
Moreover, the transactional side of this data persistence style slows the execution of data retrieval.
In addition, due to the rigidity of the schema, extensions and update of vehicle projects might require
Alter-statements.

To retrieve the measured value ID, at least one join-statement is necessary. When the first
field – ECU’s short-name – is indexed and the control unit’s short-name is already known from the
application client, the time complexity is greater than or equal to O(m). Otherwise, it could scale up
toO(nm) during a linear search, wherebyn is the number of control units of the vehicle project andm
the maximum number of measured values embedded in a control unit within the project. After that,
the right logical link must be selected. Assuming that p is the number of maximal number of logical
links of an ECU within a vehicle project, time the complexity to retrieve the correct one is between
O(p) and O(p+ log(n)) since the inheritance hierarchy could be browsed.

At this point, the control unit’s short-namemust be known as it is amandatory input parameter
to look for the set of instructions regarding the measured value’s ID. By adding the project’s ID, the
search phase points directly to the control unit –O(1) – and then looks for the informationwithin this
control unit–O(m). If it is not found in this context, the inheritance hierarchy of the ODXmodel must
be taken into account. Then, the search phase could scale up toO(m·log(n)). Similarly, since there is a
surjection frommeasured values to computation methods, the computation phase operate between
the O(m) and O(m · log(n)) range. As result, the data search with a RDBMS in the persistence tiers
operates in an O(m) time in best cases, and in O(m · log(n)) in the worst ones. The complexity space
on the other hand is O(nm) at least. In addition, there is also space requirements for optimizations
techniques such as definition of indexes, design of stored procedures and functions, configuration of
a query cache and so on.

10.2.2 ... we used a Key-value DBMS?

This is the simplest NoSQL datastore as discussed in Section 6.4.1. With this dictionary data
management style, the time complexity of all retrieval operations is O(1), under the assumption
that the keys are indexed. If they are not, it scale up to O(nm), which corresponds to the number
of entries of the dictionary. Since values of this type of DBMS can be of any type from primitive up
to BLOB types, each component of a control unit can be stored as a value. Therefore, the measured
values, each instruction to determine them, the logical links data and the computation methods
would require one entry each. Consequently, a vehicle project needs O(nm) in space, plus the space
for the eventual indexes on keys.

10.2.3 ... we used a Graph DBMS?

Although the relatively high difficulty to incorporate data into it, graph datastores offer another
level to mutually interconnect entities. This allow to capture relationships between diagnostic
classes and layers. The nodes could be the diagnostic layers connected to each other with the
“inherits” relationship. Furthermore, they might be extended with measured values, logical links,
instructions for vehicle communication and computation of raw values, also as nodes connected to
the corresponding layerwith the “belongs to” relationship. Then, the values themselves are designed
as properties and connected to the nodes they characterize.

The tree data structure of the entities as designed in Section 8.2 allows the data search
operations to achieve a time complexity in logarithmic scale of the number of nodes of the whole
tree. Therefore, the first part of the identification phase which consists in retrieving information

A Milestone for sustainable Remote Vehicle Capabilities 156

Development environment

about a measured value, is done in O(log(n + m))-time in the worst case, in O(log(n)) in the best
one. Then, the retrieval of the right logical link performs between O(log(n)) and O(log(n + p))).
Once the measured value’s ID is determined, the retrieval of information to query its value from
the vehicle performs in O(log(n)) when measured values can be accessed directly. However, if the
search is executed sequentially, this scale up to O(log(n +m)). Likewise, for the interpretation, the
computation phase needs an O(log(n))-time at least and can perform up to O(log(n + m)) when
computational methods are also designed as nodes of the graph1.

10.2.4 ... we used a Column family DBMS?

Also known as Bigtable, this type of datastore is similar to the key-value model and offers one of
the lowest operational complexity amongst the DBMSs. However, a key in a Bigtable is made up of
the combination of a row and a column’s ID. In addition, this type of DBMS is able to ingest data in
parallel, which is very suitable for insertion ofvalues in the first part of the Dictionary Server described
in Section 7.3.

A design of row’s IDs would be <project-short-name>_<layer-id>, whereby <layer-id> is one
of the ECU Shared Data, Protocol, Functional Group, Base Variant or ECU Variant short-name –
Figure 2.6. An example could be “se27x_ecm16tdi03004l906056lm”. The column’s IDswould be the
short-names of the data to look for, i.e. the set of instructions, the logical links, the computational
methods, the embedded libraries and so on. “WriteDataByIdentEcuIdent” is an example of. The
combination of these two examples allows to point directly to the PDU request to write data in the
corresponding control unit. From this design of the persistence tiers implemented in a Bigtable, we
can deduce that each search operation of data restitution phase performs in an O(1)-time.

10.2.5 ... we used a Document DBMS?

After the graph datastore type, this type is the most suitable to capture hierarchical data structure.
Moreover, it offers important functionalities for the Dictionary Server such as the search by content.
Some implementations even provide full-text search capabilities, which is very useful to look for
information about a measured value based on its textual description. However, it is up to the
developer to consolidate data in response to complex queries.

Searching the measured value’s ID in the first step of the identification phasewould perform in
O(1)when the content is indexed as it is ingested. Otherwise, it will requireO(m) in time. After that,
the DBMSwill takeO(log(n)) time to locate the right control unit’s document and then betweenO(1)
and O(p) to reach the logical link being looked for. Then, it necessitates O(log(n))-time to retrieve
the correct control unit during the search phase and likewise between O(1) when the control unit’s
content is indexed, and O(m) to reach the set of instructions about the measured value’s ID given as
parameter otherwise. The workflow ends with the computation of raw values, which also operates
in the time range between O(log(n)) and O(m+ log(n)).

10.3 Summary of computational complexity per DBMS

According to which DBMS is selected for the implementation of the persistence tiers, the response
time to data requests differs significantly from one to another. For instance, key-value and Bigtable
datastores make an abstraction of the tree data structure of the elements within a vehicle project,
enabling response time in O(1) to read operations. Those allowing to additionally capture the
semantic of data through various relationship mechanisms between components, operate in i-fold
of O(log(n)), whereby n is the number of ECUs in the vehicle project and i ∈ N. However, due to
join-statements required in the case here, the relational model operates in factors of O(m · log(n)),

1Computational methods can also be designed in an inheritance hierarchy, since they all are a type of rational fractions
(Section 8.1.6). Then, the total number of nodes is n+m.

A Milestone for sustainable Remote Vehicle Capabilities 157

Development environment

with m as the number of retrievable measured values from an ECU. Those time complexities
discussed in the previous sections are summarized in the Table 10.1. Although there were better
alternatives,we implemented theDictionaryServerprototypewith a document-basedDBMS, namely
MongoDB [MongoDB, 2017] due to internal environment constraints.

Data pattern Getmv_id* Get ll† Get instructions Get compu_method

Relational O(m) ≤ c ≤ O(nm) O(p) ≤ c ≤ O(p · log(n)) O(m) ≤ c ≤ O(m · log(n)) O(m) ≤ c ≤ O(m · log(n))
Key-value O(1) O(1) O(1) O(1)
Graph O(log(n)) ≤ c ≤ O(log(n+m)) O(log(n)) ≤ c ≤ O(log(n+ p)) O(log(n)) ≤ c ≤ O(log(n+m)) O(log(n)) ≤ c ≤ O(log(n+m))

Column family O(1) O(1) O(1) O(1)
Document O(1) ≤ c ≤ O(m) O(1) ≤ c ≤ O(p) O(log(n)) ≤ c ≤ O(m+ log(n)) O(log(n)) ≤ c ≤ O(m+ log(n))

* c is the computational time complexity, n the number of control units within the vehicle project andm, the maximal number of measured values available from a control unit.
† p is the number of logical links within the vehicle project.

Table 10.1: Estimation of time complexity per data pattern. Key-value and Bigtable
provide the best time to retrieve data from a vehicle project, as the inheritance

hierarchy is not rigorously captured. However, the tree-based data structure of the
entities enables to reach factors of O(log(n))-time.

10.4 Development of Dictionary Server

During the design of the Dictionary Server in Chapter 7, we opted for the microservice architecture.
This architectural style has many advantages well discussed in Section 3.1.4. They are in accordance
with the context of this work, whose few constraints are:

• 80,000+ users to serve almost simultaneously with 620,000+ potential internal users2;

• high availability of the system, since the users are spreaded all over the world with different
time zones, it must be available around the clock;

• scalability and performance due to the previous reasons;
• fast deployment with repeatable hot pluggable and hot swap of modules, since potential
external users are still to come;

• high fault tolerant and resilient.
Furthermore, another constraint is that the swap to the Dictionary Server cannot be performed
overnight. The solution proposed has therefore to be backwards compatible or non-disruptive.
Although the MOA enables the use of different programming languages between developers teams,
we used only the Java Development Kit in its 8th version due to time and deployment environment
constraints.

10.4.1 Parsing Technology

The Dictionary Server is made up of microservices described in Section 7.2. These services share the
similar micro-design presented in Section 9.4. The principle is that each service parses the vehicle
project as input parameter, extracts only data which it is responsible for and inserts/updates the
persistence tier accordingly. On the other hand, each service has also the responsibility to reply to
incoming (diagnostic) requests in accordance with its respective data tier. Hence, we do not have
to go deep in details of all services to explain what is the role of each of them. For example, the
logical_link service is responsible for the extraction of communication protocol and parameters of
all the control units within a vehicle project and to deliver them upon request. As parser, we used the
library VTD-XML3, which claims to be the industry’s most advanced and powerful XML processing
model.

2Status as of 2021.
3Virtual Token Descriptor for XML (VTD-XML) is a collection of cross-platform XML processing technologies using a

parsing technique called Virtual Token Descriptor (VTD). More at [XimpleWare, 2015].

A Milestone for sustainable Remote Vehicle Capabilities 158

Development environment

10.4.2 Business Logic

The business tier is implemented with help of the Spring Boot4 suite. This suite contains
also a infrastructure support for microservices deployment. For instance, we used the Eureka
Server Spring’s instance for service discovery within the Dictionary Server. For the microservice
communication, we select the API communication style with an API Gateway as coordinator of all
other services (Figure 9.4). The transmission of data takes place in a simple exchange format, namely
JSON, for all interactions due to deployment context. During the cooperation of services, the Spring
Web tool was used for (de-)serialization of JSON-based objects. On the other side, we used Swagger
UI5 for documentation. But, we preferred Spring OpenFeign6 for consuming services’ APIs. On the
persistence tier, we used the NoSQLDBMSMongoDB7 in its version 3.4. However, we used the Spring
Data Connector as adapter between the services and the datastore. Therefore, changing the DBMS
underneath is possible without changes in the business or domain tier.

10.4.3 Domain and Persistence Entities

As described in the Chapter 8, the most important characteristic of persistence entities is the
inheritance hierarchy. For this reason, the private databases of the services are very similar, as they
implement this aspect. For instance, domain entities such ecu_variant and base_variant are stored
in all parts of the distributed database. But, each part keeps only the relevant data to its context.
That means for example, that the database of the requests service contains the control units of
the imported vehicle projects and only the PDU requests that are attached to them (Figure 10.6).
On the other hand, the logical_link service’s database keeps records of ECUs and their respective
communication protocol and parameters (Figure 10.7). Therefore, the various parts of the database
are structurally very similar. Since each diagnostic object must be identified by a unique short-name
within a vehicle project, we created composed indexes on project’s and entity’s short-names to
optimize the database queries.

10.4.4 Data Integrity and Consistency

To ensure data consistency between services discussed in Section 9.5, we used the
orchestration-based Saga (Section 4.2.4), whereby the orchestrator is the Dictionary Gateway.
It triggers the import of vehicle projects into the persistence tiers by each of the core services. After
a preliminary analysis, the Dictionary Gateway slices the input vehicle project into smaller parts and
dispatches to the each core service only the piece it is responsible for. By this way, the bulk insertion
of values is highly parallelized and data is well partitioned.

Data integrity is controlled at two levels. First, each core service uses a flag during
its respective parsing procedure to indicate whether a project was successfully imported –
microservice-level integrity. Then, after the import function completes, the corresponding core
service notifies the orchestrator mentioned previously (the Dictionary Gateway). At the end, this
orchestrator evaluates all these flags to check the whether the import procedure completed overall
correctly – system-level integrity. If not, the Dictionary Server invites to try the import of the project
again. If for any reasons the import procedure is interrupted, the involved serviceswill continue from
where they stopped and import only the missing data, thanks to the optimized comparison of data
we implemented.

4Spring Boot is an open source Java-based framework, developed by Pivotal, which can be used to create standalone
and production-ready microservice-based applications. More at [Pivotal, 2018b].

5Swagger is an ecosystem of open-source tools that helps to design, to build, to document and to consume ReSTful
Web services. More at [SmartBear, 2011]

6OpenFeign creates a dynamic implementation of an interface decorated with annotations. More at [Netflix, 2013].
7MongoDB is a cross-platform document-oriented database program that uses JSON-like documents with schemata.

More at [MongoDB, 2017].

A Milestone for sustainable Remote Vehicle Capabilities 159

Development environment

Figure 10.6: Overview of the requests database related to the ECU base_variant of the
air conditioning for the Seat Ibiza.

(a) Association of an ecu_variant to a logical_link.

(b) Association of a logical_link to communication
parameters.

(c) Some communication parameters of a logical link.

Figure 10.7: Overview of the logical_link properties of the parking assist control unit in
the Seat Ibiza. After retrieving the logical link’s name of the ECU (10.7a), the association
of a logical link to its communication parameters is performed through the hash of the

values table (10.7b & 10.7c).

After exploring how we developed the Dictionary Server, which is the back-end of a vehicular
communication system, we discuss in the next section some examples of what client diagnostic
applications might look like.

A Milestone for sustainable Remote Vehicle Capabilities 160

Development environment

10.5 Diagnostic applications – the client side

To function properly, diagnostic applications need data from vehicle projects. Data such as ECU’s
communication parameters, available PDU requests, interpretation methods of encoded responses
aswell asmemory flashing procedures is provided by a runtime server. However, due to fundamental
requirements, diagnostic applications are technologically high coupled to previous versions of the
D-Server. Amongst its numerous advantages, the Dictionary Server allows to deliver diagnostic data
in a format compatiblewith awide rage of clients’ types throughwell-defined APIs. These diagnostic
clients are therefore loosely coupled to the back-end.

10.5.1 Vehicle diagnostic mobile application

As example, we used the Volkswagen Connect8 application. It is a mobile-based application which
allow to read manymeasured values from a vehicle, the logbook, the driving habits and more from a
smartphone. After sending the VIN of the vehicle to the Dictionary Server, this application intends to
receive the communication parameters and corresponding PDU requests to interrogate control units
for values such as the accelerator pedal position, the actual engine torque, the engine revolutions
per minute, the exhaust gas temperature and pressure, the intake air temperature, the NOx control
system status, the turbocharger temperature just tomention a few. Since it does notmake any sense
to save all this data on the smartphone for each vehicle model of a car manufacturer’s fleet like that
of Volkswagen, this mobile application must interact again with a Dictionary Server instance to print
values in a human-readable format.

10.5.2 Interpretation of vehicle data

It is also possible to perform some diagnostic tasks on a web view. For instance, after reading some
measured values from a vehicle key9, raw data might be filled in a (web-) view for interpretation
with the help of the Dictionary Server. As a matter of fact, vehicle data stored on the key are either
binary or hexadecimal strings. After putting the key on a reader, raw data is transmitted to a (web-)
diagnostic application, which in turn uses the interpretation functionality of the Dictionary Server to
show clear text values to the user.

10.5.3 Guided Fault Finding

Another use case to come is the troubleshooting process. As its name suggests, it is a succession of
steps to solve a problem, executed to repair errors or faults in a system. The process is conducted
systematically to identify the source of a dysfunction in order to solve it and to make the product
ready-to-operate again. Applied on vehicles, it is called Guided Fault Finding (GFF) by some
automakers. It consists in a logical combination of following actions:

• reading measured values from the vehicle;

• writing in the control units’ memory;

• modifying the state of ECUs;

• performing some manual actions in the car such as activating/deactivating the belt tensioner,
switching on/off the ignition and so on.

An overview of an example is illustrated in the Figure 10.8. Besides the manual actions, the GFF
is a good candidate to be a client of the Dictionary Server. The latter is able to provide data for
programming and flashing ECU’s memory as well as the interpretation of values to assist the user
throughout the GFF process.

8More at [Volkswagen, 2018b]
9Service available at Audi, BMW and Daimler through key readers since 2012.

A Milestone for sustainable Remote Vehicle Capabilities 161

Development environment

Figure 10.8: Overview of a GFF on the vent temperature sensor. Amongst others, the
temperature is queried from the evaporator sensor.

10.5.4 Infrastructure support in V2X systems

Vehicular communication is the crucial component of a V2X environment. It needs a reliable
communication between the road-side devices and vehicles from different automakers. The
Dictionary Server positions itself as a trustworthypartner to provide securely and resiliently necessary
data to integrate connected vehicles as Things. Road infrastructure needs only to be connected
to the back-end to receive communication parameters and requests to be able to exchange
with cars. The security during data transmission is extensively discussed in [Idrees et al., 2011,
Kleberger and Olovsson, 2013, Mahmud et al., 2005, Ndashimye et al., 2017, Nilsson et al., 2008,
Nilsson and Larson, 2008, Papadimitratos et al., 2008, RedBend, 2011, Steger et al., 2018]. They
discussed the use of Virtual Private Networks (VPNs), a Public Key Infrastructure (PKI)-based
authentication and encryption mechanisms. That is to ensure the integrity of data during the
exchange and prevent unauthorized access to V2X network’s third-parties.

10.5.5 Vehicle Data Campaign

Emission levels on the field are nowrequired from legislators in accordancewith theWLTP [EU, 2015,
EU, 2017a, EU, 2017b, Yang et al., 2016, Mock et al., 2014, ACEA, 2018]. One way consists in
equipping vehicleswith emissionmeasuring instruments [Williams, 2018]. But this method can only
be applied on a sample of cars amongst millions. Another more realistic way is to perform real-time
data collection from vehicle in the field. As illustrated in the Figure 10.9, a user might trigger a
collection campaign through the Dictionary Server (step 1). Then, this latter converts the campaign’s
instructions into requests and sends them for execution directly in involved vehicles (step 2). As soon
as a vehicle is connected, it replies to the Dictionary Server with a bunch of data (step 3). Next, this
data is converted into a human-readable format by the Dictionary Server and delivered to the user
who triggered the campaign at the first place (step 4).

A Milestone for sustainable Remote Vehicle Capabilities 162

Development environment

Figure 10.9: Sequence of a vehicle campaign procedure. For instance, a user might
trigger a data collection campaign from vehicles in the field.

10.6 Summary of the chapter

In this chapter, we presented the tools and technologies we used to build the prototype of the
Dictionary Server. Then, we made a comparison of computational complexities between the various
datastores philosophies. After that, we presented howwe implemented the Dictionary Server itself
with an overview of the persistence tiers and techniques we implemented to ensure data integrity
and consistency in such a distributed environment. We finished this chapter by discussing how client
applications should look like to be able to interact with the Dictionary Server to perform vehicle
diagnostics with an example, to support V2X systems and to collect data from vehicles in the field.
In the next chapter, we present test results, compare our prototype to existing vehicle diagnostic
solutions and also evaluate it against software quality attributes.

A Milestone for sustainable Remote Vehicle Capabilities 163

Chapter 11

Tests, Results &
Benchmarking/Discussion

Engineers believe that if it is not broke,
it does not have enough features yet.

– Scott Adams

In the previous chapter, we presented the prototype we developed as a proof of concept of our
software architecture, the Dictionary Server. In this chapter, we present the results of the tests we
made and compare theDictionaryServer against existing solutions ononehand, and against software
quality attributes on the other hand. Then, we describe how the objectives mentioned in Section 1.1
have been met. And last but not least, we conclude this chapter with a discussion about how the
Dictionary Server helps to fulfill real-world problems in the automotive industry.

11.1 Benchmarking with existing solution

The first comparison criteria is the scalability. Due to the ISO norm 22901-1, the MVCI server can
load only one vehicle project per startup. In a MOA style with a distributed database, this limitation
does not have to exist anymore. Therefore, an instance of the Dictionary Server is able to deliver
data frommany vehicles projects to many diagnostic applications without a need to restart it, as it is
required when using the conventional runtime server.

Then comes the memory consumption of each solution. As a library, each application, which
intends to use the MVCI server, must import it and the vehicle projects (eventually reversibly
encrypted in runtime format). That means a diagnostic application aiming to support the entire fleet
of an automaker has to save gigabytes of runtime data on the local disk. With the Dictionary Server,
unless the client application chooses to cache the data from the OEM’s side, the memory space
required is only that of the application itself. Because vehicle projects are also imported as a part
of diagnostic application clients, the OEM’s ingenuity is poorly protected. Knowing the encryption
passwordwill provide full access to confidentialmanufacturing data hidden in vehicle projects. Using
our Dictionary Server concept, only necessary data is transmitted to client applications and secret
information is kept on the OEM’s side.

Another consequence of the design of the MVCI server is the technology coupling with its
clients. Since it must be imported as library, applications using it have either to be in the same
implementation technology or use a wrapper to be able to communicate with it. In both cases,
the MVCI server dictates how client applications must be built and the use of a non-standard IPC
mechanism. That implies also a customized data exchange format. With an instance of theDictionary
Server, it is quite the opposite. Standardized IPC styles are used and the data exchange supports a
well-known format, widely used (JSON for our prototype). Nevertheless, proprietary communication
technologies might be used if necessary. Some are discussed in Section 3.4.

A Milestone for sustainable Remote Vehicle Capabilities 164

Tests, Results & Benchmarking/Discussion

Due to the architecture of the MVCI server, an update in vehicle projects by the OEM requires
to transport involved data all over again through the network to each diagnostic client. After that,
runtime datamight be generated again from the newdata and a proceduremust take place to ensure
data consistencywith the previous versions of the projects. After a testwe performedwith the largest
vehicle project at the Volkswagen Group, the generation of runtime data lasted approximately 20
minutes, and update process (diagnostic data extraction) more than 10.5 hours. This execution time
does not take into account the update of the client application. With our concept, thanks to the MOA,
these update tasks can be parallelized on the Dictionary Server. The longest execution time with the
same project as before was slightly more than 5 minutes (runtime data is not required here).

As discussed in Chapter 2, the use of the conventional MVCI server requires dedicated hardware
testers. That affects its portability and the costs of building such devices. The hard- and software
independence of the Dictionary Server allows it to be installed on any server equipped with a Java
Virtual Machine (JVM)1. More, its design enables the collaboration with many types of diagnostic
application clients, as long as they support the ReSTful communication style.

One more important comparison criteria is the model of data storage, since it has a significant
impact on the time complexity of a program. With the conventional runtime server, project data is
stored as compressed archive in the file system. Therefore, during data search, the MVCI server
has to search on the hard disk the corresponding project, to decompress and then to decrypt it
before delivering to diagnostic applications. Such operations’ time complexity grows linear with the
data size, or even worse [Effros, 2000]. The data model of the Dictionary Server takes advantages
of the inheritance hierarchy to organize diagnostic data in a tree data structure. In comparison
to the previous one, this structure allows better time complexity for data operations on large
data, i.e. O(log(n)) when the tree is balanced [Barnett and Tongo, 2008, Andersson et al., 2005,
Wirth, 1978].

Many vehicles manufacturers have thousands of official partners around the world, in their
respective legal and administrative frameworks. As standalone application, the MVCI server must be
installed on every diagnostic- and tester-purposed hardware at these partners. Such an architecture
decreases themaintainability aswell as the availability of this runtime server, since one of its instance
can provide only one tester device with required diagnostic data. In contrast with the Dictionary
Server, due to its scalability discussed above, the number of diagnostic clients which can be provided
with data is only limited by the host power and the network capacity.

Without an extra expensive equipment in not connected vehicles, the MVCI server does not
allow to perform remote functionalities, which are more and more demanded by customers. The
Dictionary Server allows automakers to remain competitive, as it also supports such not connected
cars to provide connectivity-based services to customers. For example, it needs only a small Dataplug
[Volkswagen, 2018a] and amobile application that could be installed on the driver’s smartphone. By
this way, cars manufactured since 2008 and later are also able to benefit from online and remote
functionalities [Poaka et al., 2020]. As a non-disruptive solution, the Dictionary Server supports
connected- aswell as V2X-compliant vehicles (Figure 7.2). The comparative analysis on all the criteria
discussed above is recapitulated in the Table 11.1.

1Only required when the Dictionary Server is implemented in Java. It can also be implemented in other languages.

A Milestone for sustainable Remote Vehicle Capabilities 165

Tests, Results & Benchmarking/Discussion

Evaluation criteria Classic MVCI Runtime Server Dictionary Server

1 instance = 1 project at the same time 1 instance = n projects at the same time, n > 1
Scalability

(no matter how powerful the host is) (only limited by the host’s power and network)

8 Gb memory disk required 0 Gb memory disk required on each
Runtime memory

on each diagnostic tester (Dec. 2018) diagnostic tester (caching data is optional)

Specialized/dedicated hardware tester
Compatibility

is required
Mobile end-based devices can be used

OEM’s know-how Low High

protection (reversible encryption-based on local testers) (vehicle projects are kept on the OEM’s side)

Diagnostic applications are high coupled Loose coupling
Technology coupling

to the MVCI runtime server (compatible with all ReST-compliant clients)

Updates Client side: up to 8 hours Client side: depends on the technology used

(client and server sides) Server side: up to 11 hours (both are coupled) Server side: < 5 mn (independently from each other)

Data organization & File system &

storage compressed archives
NoSQL DBMS

Data search Depends on the file system implementation

time complexity + encryption + compression algorithms
Queries to the Dictionary Database: O(log(n))

1 instance pro hardware tester 1 instance available to n diagnostic testers, n > 1
Availability

(standalone application) (only limited by the host’s and network’s capacity)

Remote capabilities Not possible Feasible

feasibility* (unless with expensive extra hardware) (with a cheap extra hardware†)

Network dependency Independent (client can be run offline) Highly dependent (clients must be always online)
* With common vehicle models.
† Such as the Dataplug [Volkswagen, 2018a] only for current car models.

Table 11.1: Comparison between the Runtime Server and the Dictionary Server
[Poaka et al., 2020]. The improvements are faster responses by providing data, loose

technology coupling and enable remote capabilities just to mention a few.

11.2 Prototype quality attributes

One aspect to evaluate the Dictionary Server consists in analyzing the solution regarding the
standards of quality models, which we discussed briefly in the introductory chapter. In this section,
we confront our solution against these quality criteria, starting with the most tangible from the end
user view.

11.2.1 Functional suitability

This quality attribute includes [ISO, 2011d]:

• the functional completenesswhich relates howwell a systemor a software covers the specified
tasks and objectives;

• the functional appropriateness indicates whether a software provides correct results with a
predefined precision;

• the functional correctness reflects the software’s ability to achieve specified tasks and
objectives.

The needs and requirement of the Dictionary Server was to provide diagnostic data from vehicle
projects to application clients in a secure way. The Dictionary Server was tested with existing
solutions, namely a diagnostic mobile application and and an internal web application. After few
modifications in the communication interfaces, the tests produce satisfactory results. Measured
values can be queried, hexadecimal values can be interpreted and human readable texts can
be produced from trouble codes. Therefore, our solution fulfills the functions for what it is
designed.

A Milestone for sustainable Remote Vehicle Capabilities 166

Tests, Results & Benchmarking/Discussion

11.2.2 Reliability

The sub-characteristics related to this attribute are [ISO, 2011d]:

• thematurity relates how a system fulfills the reliability requirements under normal execution;

• the availability indicates the component’s accessibility and operativeness when it is required;

• the fault tolerance measures whether a system operates as intended despite occurrence of
faults;

• when an interruption or a failure occurs, the recoverability reflects the system ability to recover
the data affected and to restore one desired of its possible states.

The tests we carried with the Dictionary Server had allowed to highlight its maturity attribute –
Table 11.1. It availability depends on two components. The first one is the deployment platform,
namely a remote server in a cloud environment in our case. But, with providers with a Service
Level Agreement (SLA) between 98 and 99.999999999% [McCreary and Kelly, 2013], the online
availability depending on the provider is more than good. The second component is software-based
and could be handled by implementing or configuring a load balancer – Figure 3.2. As one of themain
purposes of the MOA is the scaling, we included a configuration of the environment’s load balancer
in the Dictionary Server implementation. Additionally, although the deployment environment also
offers a high fault tolerance to hardware errors, we implemented a microservice chassis discussed
in Section 5.1.1. By this way, the fault tolerance of the Dictionary Server is increased so that client
applications receive almost always a response to their queries. We configured the recoverability
of the Dictionary Server’s persistence tier by relying on the recovery policies of the deployment
host.

11.2.3 Performance efficiency

This one includes [ISO, 2011d]:

• the time behavior which denotes how the response and processing times of a system and its
throughput rates, when running, match the requirements;

• the resource utilization reflects how the amounts and types of nonhuman resources used by a
system, when executing its functions, meet requirements;

• the capacity compares the maximum limits of a system to the requirements.

To measure these attributes, we compared the performance of the Dictionary Server with that of
the actual implementation. The summary of this comparison is illustrated in the Table 11.1. Our
solution has a better time complexity for updates aswell as for data search. Moreover, the Dictionary
Server requires much less space as the conventional MVCI runtime server. Due to the architectural
style, the communication mechanisms and standards we implemented, the Dictionary Server uses
less resources and provides better performance and far more possible applications and users stories
(Section 11.4). Hence, the efficiency of our solution is demonstrated.

11.2.4 Usability

The properties which belong to this attribute are [ISO, 2011d]:

• the appropriateness recognizability measures the ratio of users that recognize whether a
system is appropriate for their needs. Demonstrations, tutorials, and documentation might
help the user’s ability in the process of such a recognition;

• the learnability determines how easy a system can be learned by specified users to achieve
goals by using it with effectiveness, efficiency, freedom from risk and satisfaction in a
predefined context;

• the operability defines the ability of a system to be easy to operate and control;

• the user error protection reflects how a system protects users against making errors while use;

A Milestone for sustainable Remote Vehicle Capabilities 167

Tests, Results & Benchmarking/Discussion

• the user interface esthetics relates to the system’s capacity to enable pleasing and satisfying
interaction through its user interfaces. This property can be increased with the use of colors,
the layout and the graphical design;

• the accessibility describes how well a system can be used by people with the widest range of
capabilities to achieve a specified goal with effectiveness, efficiency, freedom from risk and
satisfaction. These people capabilities include disabilities associated with age.

Due to the fact that the Dictionary Server covers not only the use cases performed with the current
MVCI runtime server, but also allows OEMs to adapt themselves to the new needs of customers, we
can say our solution is more than appropriate. Furthermore, we performed several demonstrations
and the source code is documented through the API Swagger from [SmartBear, 2011]. Since our
solution is mainly the back-end of diagnostic client applications, the documentation just mentioned
helps to learn how to use the diverse communication gateways. This documentation provides also
how to deploy the Dictionary Server and its requirements in terms of hardware, services and libraries
from the deployment environment.

By using intuitive names for the gateways’ and parameters’ names, while taking into account
the naming conventions, users are able to understand relatively quickly the purpose of each
Dictionary Server’s communication interface. This helps to avoid errors and decreases the probability
to inadvertently use an interface instead of another. The Dictionary Server does not have a GUI for
end users and, as alreadymentioned, is a back-end solution. Therefore, the interface esthetics aspect
cannot be measured in our case. In addition, its accessibility is more relevant for application clients
designers and developers, so they integrate the implemented communication mechanisms in their
applications. Moreover,we designed security policies in Section 7.6 to reduce the risk of unauthorized
access to sensible data on one side, and the separation of network zones in Section 9.6 on another.
By putting these elements together, we can state that the Dictionary Server embeds a very high
usability, far higher than that of current implementations of the MVCI runtime server.

11.2.5 Security

This attribute is one of the most important during the evaluation of a software. It is made up of the
following sub-characteristics [ISO, 2011d]:

• the confidentiality reflects the ability of a system to ensure that data are accessible only to
authorized entities;

• the integritymeasures capacity of a system to prevent unauthorized access to, andmodification
of, computer programs and data;

• the non-repudiation indicates how far a system can track actions and events to be proven to
have taken place, so that the they cannot be repudiated later;

• the accountability expresses the precision with which the actions of an entity2 can be traced
uniquely to that entity;

• theauthenticity denotes the system’s ability to prove that the identityof an entity is the claimed.

The design of user roles in the Dictionary Server in Section 1.4.3 gives it the confidentiality property.
Further securitymeasures such as authentication and authorization presented in Section 9.1 increase
the level of authenticity and integrity of the Dictionary Server. Moreover, we designed control
measures in the business logic to ensure the data integrity in the persistence tiers. For instance, the
DBMS underneath is configured to accept only few incoming connections, namely from repository
managers and from specific IP addresses.

The logging capabilities of the Dictionary Server provide accountability and non-repudiation of
events and actions triggered by incoming requests from application clients. For instance, the headers
from incoming requests, their parameters, their IP addresses, as well as the timestamps are logged

2An entity here can be a subject, a resource, a program, a user or another a system.

A Milestone for sustainable Remote Vehicle Capabilities 168

Tests, Results & Benchmarking/Discussion

by the Dictionary Server. The security during the data transmission between the Dictionary Server
and the application clients on one hand, and between the components within the Dictionary Server
itself on the other hand, is provided by the use of a TLS 1.2-based encryption. Consequently, the
access to this server and to the data it manipulates are well protected.

11.2.6 Compatibility

This aspect is also another one of the most important characteristics a system must have,
specially in the industry or in a productive environment. Because radical changes cannot happen
overnight, without putting at risk a running business or disrupt the income stream, solutions to new
requirements must be able to perform somehow in the existing environment. The compatibility of a
system can then be measured through [ISO, 2011d]:

• its co-existence, i.e. its capability to perform its required functions efficiently while sharing a
common environment and resources with other entities, without negative impact on any of
them;

• its interoperability which measures its aptitude to exchange information with one or more
another systems and to use this information.

One the main focuses of the Dictionary Server is to collaborate with legacy systems. Due to the
requirements, its architecture requires a different deployment environment from the common MVCI
runtime server. However, this divergence allows the Dictionary Server to offer several benefits
discussed in Section 7.2.1. Despite not sharing common hardware resources, both solutions require
as input vehicle projects. Moreover, these changes does not affect the diagnostic workflow, but
rather how the entities collaborate and exchange data during the ODX life cycle as well as a
diagnostic session. For these reasons, after just few adjustments in communication interfaces in
application clients, the Dictionary Server is interoperable with other systems, namely the file system
for vehicle projects as input on one side, and with existing diagnostic applications on the other as
diagnostic data provider – Figure 7.3. Consequently, the compatibility property of our solution is
demonstrated.

11.2.7 Maintainability

In the life cycle of a system in general and, of a software in particular, themaintenance is an important
phase and contributes greatly to the system’s lifespan. It consists in the following sub-characteristics
[ISO, 2011d]:

• the modularity, which indicates how a system is composed of separate components to
minimize the impact on the others of a change in one component;

• the reusability expresses the ability of a component to can be used in more than one system,
or in building other components;

• the analysability denotes the effectiveness and efficiency to measure the impact on a whole
system of an intended change to one or more of its components, or to diagnose a system for
failures and their causes, or to identify components to be modified;

• the modifiability reflects the ability of a system to be effectively and efficiently modified
without including deficiencies or degradation of the existing system features;

• the testability indicates howeffective and efficient test criteria can be established for a system,
and tests can be executed to verify whether those criteria have been met.

The maintainability in general, and modularity particularly, is a fundamental concept in the
microservice architecture. This architectural style is the leitmotiv of the Dictionary Server design
wemade. To detect the different boundaries, we used a combination of the decomposition methods
discussed in Section 3.2. The MOA has intrinsic properties that confer the Dictionary Server a very
good reusability of its components. For instance, the logic to parse information – Section 10.4.1

A Milestone for sustainable Remote Vehicle Capabilities 169

Tests, Results & Benchmarking/Discussion

– in vehicle projects, the communication with the persistence tiers through a repository manager
presented in Section 9.4 and the communication with (pre-configured) tools from the deployment
environment are similar in several microservices we developed.

Due to the independence between the domains identified in our solution, each component
can be tested and modified independently from one another without any service disruption of the
whole Dictionary Server. This independence allow also to diagnose and identify sources of failures
in components, as each of them produce logging information. Nevertheless, this resilience of the
Dictionary Server to changes and modifications is conditioned by the ability of the communication
interfaces to remain unchanged between its parts. This underlying high modularity of our solution
has also advantages for its tests as long as adequate procedures are used. As a result, the
architectural style we used emphasizes the very high modularity of the Dictionary Server.

11.2.8 Portability

This characteristic could be related to maintainability as the independence with the deployment
environment of a software increases its resilience to changes and how it can be tested. This also
reduces the lock-in risk to a platform provider that might happen when some standards in software
engineering are not implemented. The evaluation of this aspect relies on [ISO, 2011d]:

• its adaptability measuring its capacity to be effectively and efficiently adapted for different or
evolving environments (hardware and software);

• its installability, which reflects howeffective and efficient a systemcanbe successfully installed
and/or uninstalled in a specified environment;

• its replaceability relating how it can replace another system for the same purpose in the same
environment. This includes a new version installed during an update/upgrade.

The modularity of a system, as discussed in Section 11.2.7, that allows to its parts to be deployed
independently could also have a downside. For instance, if only one component depends strongly
on its deployment environment, this might harm the portability of the whole system, as the MOA
allows to use the most suitable technology during microservice implementation to achieve a better
efficiency while performing an individual task. Therefore, the portability of a system is a trade-off
between a great heterogeneous interoperability between its components and the commitment to a
technology stack.

For the case of the Dictionary Server, due to the configuration and deployment files, its
microservices can be adjusted to the target environment. This property impact also its ability
to be (un-)installed with flexible configurations in a customized environment. The enhanced
interoperability just mentioned increases the replaceability of the Dictionary Server, due the the
technological independence of each of its components. As long as the intercommunication interfaces
do not change, any component of the Dictionary can be updated, upgraded and replaced at will. As
result, although the effective portability depends on the implementation technologies, our solution
is highly portable due to its architectural style.

We evaluated the Dictionary Server on the eight quality attributes in Systems and Software
engineering, as normalized in [ISO, 2011d], which illustrated how good our solution is by having
intrinsic quality properties. Next, we evaluate our work against scientific criteria by discussing how
we achieved the objectives discussed in Section 1.2.1.

11.3 Discussion of challenges

In Section 1.1, we presented the context and motivations of our work. Its goal consisted in
an architectural design of a runtime server for vehicle diagnostic applications with future-proof
technologies. We subdivided this goal into several objectives that helped to fulfill its requirements.
In the next sections, we evaluate these objectives and describe how the Dictionary Server achieved
them.

A Milestone for sustainable Remote Vehicle Capabilities 170

Tests, Results & Benchmarking/Discussion

11.3.1 OEM’s know-how is protected

Diagnostic data in vehicle projects is an important part of OEMs’ expertise. Such data is also relevant
for internal as well as public diagnostic applications. The first objective was to protect such sensitive
data.

O1: OEM’s know-how safety
To keepOEM’s know-how safe in an untrusted environmentwhile providing
vehicle data from to diagnostic applications.

One of the main advantages of the Dictionary Server is that vehicle projects are kept at the OEM side
– Figure 7.2 – and not on the client side anymore. Previous implementations of the runtime server
keep on each diagnostic application this data with a reversible encryption function. That means as
soon as the encryption key is publicly available or stolen, vehicle projects are not protected anymore.
Such an unpleasant case will then force the OEM to perform fastidious updates on each application
client with a new encryption key, with hope it would be fast enough to limit damages.

11.3.2 No technology coupling

Due to its previous architecture, the runtime server had to be part of diagnostic client applications.
They had then to import it as a library in their source code to be able to communicate with any
vehicle it supports. This implied a high technology dependence of the application clients to that of
the runtime server. The next objective to achieve was to loose such a coupling.

O2: Technological coupling
To ensure loose technological coupling while providing data to diagnostic
applications.

Thanks to the Dictionary Server’s architecture, several standards in software engineering can be
used and the technology independence is satisfied. We made the use of the MOA directed
by boundaries detection and business capabilities identification. Communication mechanisms
discussed in Section 3.3 and Section 3.4 enable technology independence between domains within
the Dictionary Server on one side, as well as loose couplingwith application clients on the other. We
implemented an API gateway to coordinate the microservices, and the ReST-based communication
model to provide necessary diagnostic data to application clients.

11.3.3 Scalability

After the two previous objectives, we had tomeet requirements about the scalability of the system as
awhole, i.e. the scalability of the server block aswell as that of diagnostic applications. On one hand,
with its previous architecture, the runtime server is allowed to handle only one vehicle project at a
time. Its restart is also required when the project has to be changed. On the other hand, due to the
technological coupling mentioned in Section 11.3.2, diagnostic application clients are also limited in
the number of vehicles to communicate with simultaneously. The objective was then to provide a
solution that is highly scalable to be industry-ready.

O3: Scalability
To design a highly scalable solution to support diagnostic applications with
many vehicles simultaneously without loosing quality of service.

The Dictionary Server keeps the vehicle projects and the business logic of the MVCI runtime server on
theOEM’s side. Moreover, it makes the use of theMOA to identify and separates business concerns as
autonomous microservices. These guidelines induce the Dictionary Server’s scalability to be limited

A Milestone for sustainable Remote Vehicle Capabilities 171

Tests, Results & Benchmarking/Discussion

only by the deployment infrastructure at the OEM. Our design allow also to handle several vehicle
projects simultaneously, without a restart to switch between them. Additionally, the MOA enables
the Dictionary Server to have a linear scalability in relation to the number of servers on which it
is deployed and instantiated. This relieves the application clients from the burden to scale with
the number of vehicle projects to support. With the Dictionary Server, to communicate with many
vehicles simultaneously, they need only to be connected to as many diagnostic communication
interfaces as they can (VCI, wireless or not, OTA). These elements demonstrate how the concern
about the system scalability is achieved.

11.3.4 Data model for vehicle projects

Vehicle projects are stored as compressed archives files. As illustrated in the ODX life cycle, these
files are used by several parties for their respective daily tasks. The files are therefore transported
from one department to another via various media. Consequently, it is very difficult to guarantee
that a same vehicle project is at the same version at all the third-parties which need it. For these
reasons, the next objective of this research work was to provide an efficient data model to support
data sharing during an ODX life cycle.

O4: Data model for vehicle projects
To design a data model that is efficient and sustainable for the storage of
diagnostic data in context of vehicle communication.

A centralized database is one response to this issue. In this vein, after a rigorous comparison between
the variousmain philosophies, we designed a datamodel suitable to store the vehicle projects and to
make them available to all authorized third-parties in a secure and controlled manner. We designed
one of these security aspects in Section 7.6. For the implementation of this data model, we used
the non-relational data architecture pattern, based on a tree-like hierarchy model we presented in
Chapter 8. These enable a sustainable data management system for vehicle projects during the ODX
life cycle. NoSQL DBMSs provide the efficiency needed, since they are designed specifically for such
purposes, as we discussed in Section 6.3.1, Section 6.3.2, and Section 6.3.3 in Chapter 6.

11.3.5 Online and remote capabilities

To remain competitive, besides simple vehicles, car manufacturers have also to adapt their
business model to offer a range of mobility services. In addition, V2X services imply computing
power- and memory-limited hardware devices as RSU. Furthermore, legislation requires from these
manufacturers real emissions values of vehicle in the field. All these three scenarios have a crucial
component in common, namely the remote access to vehicles, which was the next objective to
face.

O5: Online and remote capabilities
To design an architecture for vehicle communication to enable online and
remote vehicle capabilities to supportmobility services.

The Dictionary Server embeds the necessary business logic to manipulate vehicle projects on OEM
side. This enables the diagnostic application clients to act as simple jumppoint for the server to reach
the vehicle. By this way, application clients can be lightweight enough to run on resources-limited
devices. Consequently, RSUs can collaborate with the Dictionary Server to support V2X-based
services. On the other hand, the Dictionary Server also enables car manufacturers to reach their
products on a large scale not only to retrieve (automatically) measured values from their fleet in the
field, but also to run campaigns remotely. These actions are possible with the roles we designed in
Section 7.6, namely the advanced technician and the campaignmanager roles. The latter role allows

A Milestone for sustainable Remote Vehicle Capabilities 172

Tests, Results & Benchmarking/Discussion

to perform functions of mobility services such as feature on demand, remote vehicle diagnostic,
remote update/upgrade of control units and much more, as discussed in Section 11.4. In the light of
these elements, the Dictionary Server supports remote capabilities in a sustainable manner and the
objective is achieved.

11.3.6 Backwards compatibility

Current ODX standards are still widespread despite the known limitations. That means, the changes
proposed by the Dictionary Server cannot happen overnight. Therefore, it must also allow the legacy
systems to keep running. By this way, it will neither disturb actual manufacturers’ income stream,
nor interrupt user service in use today. Therefore, the next objective to meet was to the solution to
be backwards compatible.

O6: Backwards compatibility
To design a new architecture that is backwards compatible, i.e. that
supports current as well as connected and V2X-compliant vehicle models,
that is as cost-efficient as possible.

Current diagnostic applications also make use of diagnostic data extracted from vehicle projects.
The vehicle diagnostic procedure, illustrated in the Figure 2.3 is still feasible with the Dictionary
Server. We illustrated it with a detailed sequence diagram in the Figure 7.3. These application clients
have only to adjust their communication interfaces to comply with standardized IPC mechanisms
presented in Section 3.4. Because of the standardized communication mechanisms used during its
design, theDictionary Server is also backwards compatiblewith existing diagnostic applications. That
enables a smooth transition from not-scalable and power-limited legacy systems to the Dictionary
Server.

11.3.7 Future-proof architecture

The automotive industry is a challenging and increasingly competitive environment. One way to
face this competitiveness consists in an adjustment of the portfolio by offering services as well as
the products themselves. Since the feature shared by mobility services discussed in Section 11.3.5
is the communication with vehicle, the MVCI runtime server is the most crucial component in the
communication chain. As discussed in Section 1.1 of this work, the current architecture does not
allow to support remote capabilities and services in vehicles. The goal of this thesis was then to
provide a Software Architecture that enables such vehicle services.

The Dictionary Server provides a full range of benefits through its architecture and its
implementation as proof of concept illustrates it efficiency. Firstly, it allows a better protection of
sensible data, by keeping it on the OEM’s side. Secondly, its architecture removes the technological
coupling imposed to diagnostic application clients. Thirdly, it makes use of technologies that focus
on scalability. In addition, it embeds a sustainable data model for vehicle projects information. The
Dictionary Server also allows OEMs to offer remote capabilities and mobility services. And, above
all, this new architecture is backwards compatible. In Section 11.2 we described how the prototype
we implemented also meets the non-functional requirements. As summary, the Dictionary Server
provides an excellent solution for carmanufacturers to remain competitive and satisfy the newneeds
of their customers in a sustainable way through its architectural design as well as the technologies
embedded in its implementation.

A Milestone for sustainable Remote Vehicle Capabilities 173

Tests, Results & Benchmarking/Discussion

11.4 Application spectrum – User stories

11.4.1 Vehicle remote capabilities

For competitiveness in the global market, OEMs should design new strategies to provide more
mobility services rather than only simple cars. Consequently, next generation of vehicles should
provide powerful connectivity and telematics services in regard to IoT, enabling many new
applications based on enhanced vehicle communication. Such services imply important changes
not only in vehicle ECU network architecture, but also for after-sales applications. These services
require newcontrol unit(s) or special devices embedded tovehicleswith connectivity functionality. As
example, Volkswagen Group designed an OBD-compatible DataPlug and proposes it to its customers
to benefit from Volkswagen Mobility Services, including remote Services or Capabilities. The
Dictionary Server is designed in this vein as an important part of a running project to support these
services.

At Volvo, [Johanson et al., 2011] proposed a prototype system implementation for remote
vehicle diagnosis via Diagnostic communication over Internet Protocol (DoIP). In their experiments,
they needed a computer connected to the OBD interface, a proxy server and a VPN. They succeeded
to read-out all DTCs of approximately 20 ECUs in 10 minutes, but no write commands to ECUs
were tested. Moreover, they limited the activities between two separate sub-networks. They
also acknowledged that their system has scalability implications for aftermarket applications and
proposed some solutions to these. [Idrees et al., 2011] gave a detailed presentation of a remote
software download procedure including some remote diagnostic with a case of remote firmware
updates.

11.4.2 Remote emission controls

One reason of such projects is that vehicles recalls are a very time- and money-expensive activity
and hence should be avoided as much as possible. Remote emission controls and measurements
normalized in [ISO, 2011a] are also another important underlying aspect of vehicle diagnostic,
specially because of law regulations. [Yang et al., 2016] even stated that remote OBD system is a
promising technology for monitoring in-use vehicle emissions. But they all require a local computer
with a standalone software either physically connected to the vehicle or to few cars within the
coverage area of a wireless (sub-)network. The Dictionary Server can be used within such projects
by providing to all of them the necessary component which supplies CAN bus-related requests in a
more efficient manner. However, a look at the Figure 2.11 highlights an important aspect to take
into account in terms of architecture design. Despite the remote connection to a Dictionary Server,
the D-PDU API must necessary be kept as close to the vehicle as possible, because of its role as a
communication interface with the hardware system made up of ECUs. For instance, the D-PDU API
should be used as a library within test and diagnostic applications.

11.4.3 First level vehicle diagnostic

Every vehicle owner fears the unpleasant situation when the car is out of order. Such situations are
very annoying and in most of the cases the vehicle must be transported to a repair shop, sometimes
formanydays. In themeantime, the car is unavailable and the ownermust find anotherway to remain
mobile. On the other side, only specialized technicians are capable to use diagnostic applications
to repair vehicles at the shop. The whole diagnostic process and the verification tasks must be
performed. One step to minimize the time a vehicle spends at the repair shop could be activities
such as first aids consisting in reading the vehicle status on site, sending a report to a shop nearby
and eventually performing an assisted remote repair of the vehicle itself. By this way, if the vehicle
still need to be driven to the repair shop, the technician will be able to know exactly the issues
before it arrives and therefore, repair it quicker. However, the person who should perform the

A Milestone for sustainable Remote Vehicle Capabilities 174

Tests, Results & Benchmarking/Discussion

first aids phase on site does not have neither a computer with a specialized diagnostic application
installed, nor the experience of a technician to launch it. Consequently, two components are required
[Poaka et al., 2020]:

(i) a lightweight diagnostic application with very simple functions for 1st level diagnostic tasks
such as retrieve some measured values and read-out of DTCs from the vehicle (the vehicle
status);

(ii) a remote access to a Dictionary Server instance to retrieve necessary data for the
communication with the CAN bus and to show the status report in a human-readable format.

In some cases, the car could be repaired, when the person running the first aids is assisted
remotely by a service technician or a member of the support team such as the scenario described
in [Wang, 2013].

11.4.4 Proactive maintenance

For automotive companies, there are also useful use cases that can be easier covered by a Dictionary
Server. One concrete example could be real-time emissions measurements in the field of the
entire fleet, for a precise vehicle model, or for cars built within a given year. For millions of cars
already sold, it is unsustainable to send each of them to shops to perform these measurements.
Moreover, with new legislation policies requiring not only theoretical or laboratory emissions values,
but rather also realistic ones from the field during daily driving situations under common ambient
constraints [Yang et al., 2015, EU, 2015]. Such gigantic campaigns can be achieved only with help
from car drivers, and they are in situations similar as described above, i.e. without knowledge
on diagnostic applications, neither with special test equipment [Poaka et al., 2020]. A mobile
diagnostic application as a thin client of a Dictionary Server could therefore be very helpful. Emission
measurements are not the only relevant data from vehicles in the field. There is also the proactive
maintenance as discussed in [Zhang et al., 2010], which consists in gathering many other diagnostic
measured values and prognostic data3 from sensors to estimate the current health status of the
vehicle and to predict the remaining life of systems [Poaka et al., 2020].

11.4.5 Feature on Demand

Another use case could be updates or upgrades of specific control units. The common reason for
vehicle recalls is that a critical issue was found by an OEM related to a particular ECU after already
having started to sell the car model involved. Instead of replacing the whole control unit in a repair
shop, which is burdensome for service technicians and expensive for manufacturers, the issue can
sometimes be fixed with a software update [Poaka et al., 2020]. A step further can be the firmware
upgrade. This use case could even be commercialized by OEMs as feature-on-demand. In such a
case, owners can buy new ECU features in their vehicles that they are interested in. Nevertheless,
this use case must be designed and implemented on the mobile thin client in a very smart way, as
ECU firmware files could be large and their download could thus lead to a relatively high network
latency.

11.4.6 Do not use a relational data pattern

Only a concept is discussed in the Chapter 7, leaving the choice of the implementation technology
to software designers and developers. However, there are some recommendations to guide this
choice. First of all, the type of the Dictionary Database. Since the database schema should match
exactly the UML data model of the ODX norm, one could think to relational databases in the first
place. One instance of this type could effectively fit the required schema, namely the inherent

3The gathering of data should be performed with the utmost respect for data privacy laws in the country where this
functionality takes place.

A Milestone for sustainable Remote Vehicle Capabilities 175

Tests, Results & Benchmarking/Discussion

hierarchical structure of XML elements and the dependencies between ODX files. But selection query
routines to retrieve diagnostic datawill lead to highly complex join-requests between tables, which is
well-known to be time- and memory-consuming in relational databases [McCreary and Kelly, 2013].
In addition, the data model is in an object-oriented language, that means some extra fields in
relational tables must be designed to maintain the embedded hierarchical structure and ensure data
consistency. Despite its simplicity and its formal mathematical foundation, a relational database
instance is however not recommended to use as the ODX Dictionary since it is the bottleneck of the
Dictionary Server.

11.4.7 Use a NoSQL datastore instead

A second thought drives to NoSQL4 databases management systems. One group of such
databases are made up of object-oriented databases where data is represented in form of
objects as used in object-oriented programming, which seem to match perfectly with the ISO
22901-1 data model. They are suitable for complex data and complex data relationships
[Ghongade and Pursanis, 2014]. From their definition, they integrate also all object-oriented
features such as inheritance, polymorphism and encapsulation [Robie and Bartels, 1994]. Methods
can also be “attached” to an object, which could be seen as an equivalent of stored procedures or
functions in relational databases. There are also document-orienteddatabases specifically designed
formanaging information as document-oriented or semi-structured data. Native XML databases are
a sub-group of document-oriented databases that are optimized for processing XML files. This type
is truly adapted to ODX files due to their data format. One could think therefore to import them
directly within an instance of an XML database and to query diagnostic data easily. The D-Server API
would then be implemented as the communication interface between theODXDictionaryService and
the XML database-in-the-middle. Graph databases are quite similar, but add relationships between
documents for rapid traversal queries. These relationships could be used to match the hierarchical
dependencies between ODX data.

11.4.8 Think about data and system security

Last but not least, security questions cannot be left in background, quite the contrary they are as
much relevant as the implementation technology of the Dictionary Server. The third-parties involved
in the ECU life cycle will have access granted to the same database-in-the-middle, each one with
just enough privileges as required to complete its activities. With relational databases, there is the
concept of viewswhich are very convenient in such cases and have to be conceived very carefully by
designers. Unfortunately, there are not such features in NoSQL databases, excepted with MongoDB
with its 3.4 release [MongoDB, 2017]. Regarding the runtime data that is created from the ODX
database not only for performance, but also for security reasons, it could become unnecessary to
have this conversion as extra step, since all is located on the OEM side with the Dictionary Service.
There are also extremely good libraries to parse XML files. Since this conversion in the ISO norm
[ISO, 2008b] is only a recommendation, it is up to designers to decidewhether they need it, although
almost all known D-Server instances are runtime data-based for security reasons. Besides, it is not to
forget the existing solutions that are using this runtime format already. As the Dictionary Server will
grow up, maybe in the future, the runtime data converter will be obsolete. The Dictionary Server
has also one drawback, namely the high dependence on network to launch diagnostic services.
Hence, as another bottleneck, developers should pay special attention to how the communication
will take place and data are exchanged in detail between the parties. One solution could be the
implementation of a cache or a temporarymemory space on the client application side to keep most
used and relevant data.

4More on NoSQL database-management systems in [Li and Manoharan, 2013, Han et al., 2011, Kubacki, 2009].

A Milestone for sustainable Remote Vehicle Capabilities 176

Tests, Results & Benchmarking/Discussion

11.5 Summary of the chapter

We started this chapter with a comparative study of the prototype of our solution, the Dictionary
Server, against the existing solutions. The results showed that the Dictionary Server delivers
substantial improvements (Table 11.1) in the field of vehicle communication in general and in vehicle
diagnostic in particular. Then, we evaluate the prototype against software quality attributes. This
evaluation showed how our prototype implemented all quality attributes discussed in Section 1.4.5.
After that, we evaluate our Software Architecture against the objectives and goal of this research
work discussed in Section 1.2 and we demonstrated how they have all been achieved with our
Software Architecture. To conclude this chapter, we explored other usages and user stories that
the Dictionary Server helps to fulfill with little efforts and low integration costs.

A Milestone for sustainable Remote Vehicle Capabilities 177

Part V

Conclusion & Perspectives

A Milestone for sustainable Remote Vehicle Capabilities 178

Chapter 12

Conclusion and Outlook

Quidvis recte factum quamvis humile
praeclarum.

– Henry Royce

Automotive industry is a very innovative area in the world, thanks to strong competition amongst
automakers. These innovations are more in IT domain than in mechanics. These built-in electronic
parts should be designed by following standards, must not jeopardize users and environment safety
and must take into account the international legislation. Moreover, vehicle manufacturers have to
adapt to changing needs of customers that are not lured by just fancy cars anymore. They appreciate
more mobility and connectivity-based services. That is why the number of ECUs in a vehicle keeps
growing as well as the software to control them, from comfort functions such as infotainment up
to safety-critical systems like the ABS and Electronic Stability Control (ESC). Therefore, car software
audit is as important as quality control and maintenance routines on vehicle hardware parts during
its life cycle.

Motivated by this incredible innovation culture at the Volkswagen Group to pace tough
competition in the automotive industry, this research work designed a Software Architecture
for Remote Vehicles Services. This architecture focuses on communication of a vehicle with
external components. These components include other vehicles – V2V communication – and the
infrastructure in terms of V2X communication. The two fundamental elements at the core of this
architecture are data from vehicles and the vehicle projects. Then, it includes the stakeholders
involved in the vehicle life cycle, starting from the vehicle design in the R&D department up to the
after-sales including the manufacturing and the sales. This architecture also makes good use of the
precepts of the MOA and takes into account the standards and the quality attributes in software
engineering. Another equally important component of this architecture is the data model that
includes the types of data that a vehicle can produce, how it is stored and how it can be used by
the authorized third-parties.

12.1 Overview

We started in Chapter 2 by discussing international norms in the automotive industry. One of
the main groups that defined these norms is the ASAM. They designed the ODX format for data
exchange. The second is the SAE that specified serial communications and control for heavy vehicles.
Another one is the AUTOSAR Group that proposed a standard for data exchange between ECUs. They
also proposed a standard for communication between the third-parties of the vehicle’s life cycle.
Furthermore, few years ago, the European Union in collaboration with Canada, Japan and People’s
Republic of China published the WLTP which is related to safety and environmental regulations.
Then, we presented the benefits of these standards, the differences between the implementations
at various automakers and their limitations.

A Milestone for sustainable Remote Vehicle Capabilities 179

Conclusion

Next, in Chapter 3, we discussed in details architecture design principles in software
engineering. We started with the DDD, then followed the business capability decomposition and
complementary techniques. We compared them against each other and presented how each one
has its application domain in order to exploit their full potential respectively and to avoid the
pitfalls of inadequacy. We also discussed IPC technologies and communication styles, and resilience
improvementmethods. In Chapter 4,we discussed the challenges of data persistence in a distributed
system architecture, specially in the MOA and solutions – the patterns – to face them. Very
important utilities to the MOA were discussed in Chapter 5, from the chassis to testing guidelines
and procedures. As important as the previous elements that contribute to the design of the business
layer, the keystone of the persistence tier is discussed in the Chapter 6. After reviewing the two
main data architecture patterns, we discussed the various types of DBMS, from relational to NoSQL
through XML, object- and hybrid types. We discussed the pros and cons of each type of DBMS, the
query strategies and howtomake themeffective. Data security is also a crucial part of that databases
chapter, since this concept is extremely important for the whole architecture we proposed.

In Chapter 7 we discussed the architectural design of our solution, from the overall design
down to the detailed conception of each building block, their respective algorithms and the security
measures for data access we implemented. Then, in Chapter 8, we described the data layer of our
solution. We presented the main data entities and designed the data model for efficient query
execution time. In Chapter 9 we provided details of the implementation of our prototype. We
presented the design of the Dictionary Server’s smallest building unit and illustrated its physical and
logical architectures. We also discussed some patterns that helped us to meet the non-functional
requirements. In Chapter 10, we discussed the implementation itself in details and the technological
choices we made. We also described how client diagnostic applications use the Dictionary Server to
provide vehicle communication-based services. Chapter 11 beginswith test results of our prototype.
Then, followed a rigorous evaluation against software quality attributes. After that,we demonstrated
how we solved the issues and faced the objectives of this research work. The chapter is concluded
with further user stories that the Dictionary Server helps to fulfill.

12.2 Summary

From the context and motivations, we identified the objectives to meet in this work. Based on the
issues they brought to our attention, we clustered them into four categories (Section 1.2):

• security of OEM’s and system data, which it about security of data from automakers and from
vehicle during its transmission;

• architecture design principles and techniques in software engineering;
• communication standards which addresses communication mechanisms between the
third-parties involved in the diagnostic workflow;

• software quality attributes, with focus on the performance and efficiency of our solution.

Let us synthesize howwe faced those challenges.

12.2.1 Security of OEM’s and System Data

How to keep OEM’s know-how protected while providing diagnostic data to other applications is
the challenge in this category. Many models to tackle this concern were discussed in data security
section of Chapter 6. On one hand, authentication, authorization and access control policies are
just a few of the basic building blocks of the solution to this problem. Since our architecture must
also provides online mobility services, the use of an API gateway and other application-level security
policies were also described. These elements implemented together provide a high level of data
safety and minimize unauthorized access to it.

A Milestone for sustainable Remote Vehicle Capabilities 180

Conclusion

12.2.2 Architecture Design Principles

In this category, the first objective is to avoid the technological dependency. To answer that, we use
a combination of design principles based on business domains and capabilities decomposition and
architectural patterns. These concepts were discussed in details in Chapter 3. The next objective
in this category is the data model design for vehicle projects. Various data store philosophies were
discussed in Chapter 6 and how to optimize data queries. We also reviewed the techniques to face
challenges of the persistence layer in a distributed architectural style. Then, comes the objective
about providing connectivity-basedvehicle capabilities. After detecting domains as justmentioned,
how to expose them to client applications is reviewed in the second half of Chapter 3. Thanks to
the design principles from above and the vehicle capabilities exposure, our solution is compatible
with many types of vehicle communication applications that can be launched on a broad range of
hardware devices.

12.2.3 Communication Standards

This category is about the non-disruptive property – backwards compatibility – of our solution
and its seamless integration in the existing systems. The issue raised by the next objective is
then the backwards compatibility while minimizing implementation costs. One way to ensure this
property consists in using standard communication protocols between the third-parties involved
in the vehicle life cycle. The elements to answer to this were discussed in Chapter 2. We used
guided by these elements to extract the communicationworkflowbetween avehicle and a diagnostic
application on one side, and between a diagnostic application and an authorized third-party on the
other. Our solution integrates various components of those standards and combines them with our
own designed ones in such a smart way that requires only minimal changes in existing diagnostic
applications, or in vehicle communication applications in general. By this way, integration costs of
an instance of our architecture are very low.

12.2.4 Software Quality Attributes

A good design needs to be verified against quality measures. Besides the data security perspective
previously summarized, themost important attributes to consider in our case studyare the scalability
and the sustainability of the solution, as next objectives. Chapter 3 provided elements to face them.
This chapter also discussed elements to reach a high degree of modularity of components, which
increases the maintainability of our solution. Furthermore, Chapter 5 provided elements to improve
the testability of the system. Its integrity attribute is covered by the elements of the data security
as summarized in Section 12.2.1. Due to the technological independence from design principles we
used, our architecture has a high portability and therefore can be implemented inmanyprogramming
languages and deployed on several types of platforms.

12.3 Contributions

The fundamentals summarized in the previous sections provide building blocks to meet the
objectives we identified in this thesis. As illustrated in the Figure 1.7, they add up to face the main
challenge of this work, namely a Software Architecture for Online and Remote Vehicle Services.
We thoroughly discussed our design in the Chapter 7whereby every component was described, how
they are assembled to collaborate for the common goal, which is to provide diagnostic data to client
applications. The selected model for data security and the algorithms of this collaboration were also
presented. Then, we went more in details with the design of the persistence layer in Chapter 8. We
identified the core entities of the data model and then built the data model itself.

In the detailed design in Chapter 9, we provided specifics such as the IPC style we have chosen
and the patterns we used for the implementation of the prototype – the Dictionary Server. Next,

A Milestone for sustainable Remote Vehicle Capabilities 181

Conclusion

we presented the properties that enable our solution to be observable for monitoring. Then, we
presented the micro-design of the Dictionary Server, which represent the microservice unit of the
whole architecture. Then followed the logical architecture and more security measures used during
the deployment of the prototype.

We started Chapter 10 with a quick review on parallel computing as a prerequisite for coding.
Then, we compared computational complexities of applications with different DBMSs, and then
we selected one of them. After that, we described the development environment and the various
technologies we used during the deployment. For the comparison against existing solutions, we
selected some user stories to test with and discussed how other client applications might interact
with the Dictionary Server to fulfill further user stories. In Chapter 11, we evaluated our prototype
against the current diagnostic system and highlighted the significant improvements in Table 11.1.
After that, we also evaluated the quality attributes of the prototype, then followed a discussion on
the results we obtained and the application spectrum of our architecture.

12.4 Outlook

Our thesis emerged from an ever-evolving context. The automotive industry is changing very quickly,
specially to improve mobility of people and goods. One core element of this work is the vehicle
projects organized following the ODX norm. This data model is prone to entity redundancy and time
complexity of data query is up to O(mn) as discussed in Section 10.2.1. One future direction of this
research work consists in proposing a tree-based data model for data within vehicle projects to the
ISO for normalization. A such model has query time of O(logn +m) as described in Section 10.2.3.
Furthermore, redundancies can be detected quickly and even be avoided. In a graph-like datamodel,
algorithms such as the shortest path can be performed to identify the shortest way between two
ECUs. Clustering detection algorithms can also be used to group ECUs according to their categories
and help to organize them within the internal vehicle network.

We developed a prototype for read-only access to vehicles, where we implemented the query
and the interpretation of measured values from a vehicle. A further development is to expand this
implementation to support alsowrite-access to performmore complicated tasks such a ECU flashing
and hardware reprogramming among others. A full vehicle diagnostic procedure can be performed
only when these two types of access are well functioning. This also allows automakers to expand
their service portfolio to include features such as feature-on-demand for their customers.

For data security, we proposed a user account management policy based on an access control
model. But by this way, it has to be implemented and handled inside the system, which is an
additionalworkload for the developer. One solution consists in the integration of anActive Directory
Gateway. The user and role management is therefore externalized and the development team can
focus on the implementation of the functional requirements of the Dictionary Server. Moreover,
this separation of concerns increases the modularity and the portability of our solution. This also
increases user-friendliness, since the users of an existing system do not need to handle another
additional credentials to use the new one.

Many third-parties are involved in the vehicle life cycle. For demonstration purposes, we
developed a prototype with focus on vehicle diagnostic, which is one part of this life cycle. A future
work should extend one instance of theDictionary Server to be also used first and foremost byvehicle
customers, then the R&D department, the manufacturing and the service providers. Automotive
companies should move towards an hybrid business model by integrating software competence in
their human resources. The Dictionary Server is just one example of the benefits of this shift. It
allows automakers to revolutionize the automotive world by transforming and expanding further
the mobility services. By doing so, they are always ahead of the competition in a very challenging
market.

A Milestone for sustainable Remote Vehicle Capabilities 182

Appendices

A Milestone for sustainable Remote Vehicle Capabilities 183

Mathematical background

There are many important things that should be taken care of, like user friendliness, modularity,
security, maintainability, and so on. However, we can have all these things only if we have
performance. So performance is like currency through which we can buy all the previous things.
Asymptotic Analysis is the big idea that handles the comparison between two algorithms in terms
of input size. It determines how the time and/or space taken by an algorithm evolves with the input
size. The idea of asymptotic analysis is to have a measure of the efficiency of algorithms that do
not depend on machine-specific constants and does not require algorithms to be implemented and
time taken by programs to be compared. Asymptotic notations are mathematical tools to represent
the time complexity of algorithms for asymptotic analysis. The next asymptotic notations are mostly
used to represent the time complexity of algorithms.

1 Big O Notation

The Big O notation defines an upper bound of an algorithm, it bounds a function only from above.
Let f : N→ N and g : N→ N be two functions. We say that f is of order g and write f(n) = O(g(n))
iff there exist a, b ∈ R+ such that 0 ≤ f(n) ≤ a ∗ g(n) for every n ≥ b. Informally this means that f is
bounded above by a constant multiple of g for sufficiently large values of n.

Example: If f(n) = n3 + 3n2 + n+ 1, then f(n) = O(n3).
Note that we also have f(n) = O(n5), indeed f(n) = O(nk) for any k ≥ 3.

One important case is f(n) = O(1), which denotes the fact that f is bounded. Manipulation of
O-notation needs to be performed with care. In particular it is not symmetric, i.e. f(n) = O(g(n))
does not imply that g(n) = O(f(n)).

Example: n = O(n3), but n3 6= O(n).

2 Ω notation

As big O notation provides an asymptotic upper bound, Ω notation provides an asymptotic lower
bound on a function. Let f : N → N and g : N → N be two functions. We write f(n) = Ω(g(n)) iff
there exist a, b ∈ R+ such that 0 ≤ a ∗ g(n) ≤ f(n) for every n ≥ b. Informally this means that f is
bounded below by a constant multiple of g for sufficiently large values of n.

Example: If f(n) = n2 + 3n+ 2, then f(n) = Ω(n).
We also have f(n) = Ω(1), which illustrates the best case scenario of an algorithm.

Ω notation can be useful when we need to know the lower bound on time complexity of an
algorithm. However, in practice, it is the least used notation when evaluating algorithm efficiency.
Ensuring a lower bound on an algorithm does not provide any information as in theworst case, since
it may take years to complete.

A Milestone for sustainable Remote Vehicle Capabilities 184

Mathematical background

3 Θ notation

The Θ notation bounds a function from above and below, so it defines exact asymptotic behavior.
Let f : N → N and g : N → N be two functions. We write f(n) = Θ(g(n)) iff there exist a, b, c ∈ R+

such that 0 ≤ a ∗ g(n) ≤ f(n) ≤ b ∗ g(n) for every n ≥ c. Informally this means that f is bounded
above and below by a constant multiple of g for sufficiently large values of n. The definition ofΘ also
requires that f(n) must be non-negative for values of n ≥ c. A simple way to get Θ notation of an
expression is to drop low order terms and ignore leading constants.

Example: If f(n) = 4n2 + n+ 5, then f(n) = Θ(n2).

A Milestone for sustainable Remote Vehicle Capabilities 185

Agile Service Development

In general, agility refers to a behavior of an entity to be flexible enough to accommodate
expected or unexpected changes very quickly by using economical, simple, and quality instruments
in a dynamic environment [Lankhorst, 2012]. In software development, Agile describes a very
specific development style with the aim of improving the effectiveness of software development
professionals, teams, and organizations through collaborative effort of self-organizing and
cross-functional teams and their end users. It relies on very high discipline and rigor without
being a heavyweight or ceremonious process. It denotes a style in the middle between enough
flexibility and enough structure. In other words, Agile is built on a set of values and principles
and requires rigor and a high degree of discipline to properly execute. It requires adaptive
planning, evolutionary development, early delivery, continual improvement, and it encourages
flexible responses to requirement changes, availability of resources, and understanding of the
problems to be solved.

The Agile Manifesto is [Beck et al., 2020]:

We are uncovering better ways of developing software by doing it and helping others do
it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

1 Agile methods

One of the agile software development methods Extreme Programming (XP). The main focus
of XP are customer satisfaction and teamwork. The former can be accomplished with iterative
work procedures that deliver valuable working solutions early and often. The customer must be
continuously available to determine the functions to implement and to prioritize them. Teamwork
is stressed by having a self-organized team: customers, developers and managers are equal
partners in the team and share the responsibility for its success [Lankhorst, 2012]. Another
development methods is pair programming, in which two developers share a workstation and
develop code together, which increases product quality and improves knowledge transfer between
team members.

Another method is Scrum, which is a framework for developing, delivering, and sustaining
products with an initial emphasis on software development. It is designed for teams of ten or fewer
members, who break their work into goals that can be completed within short iterations (sprints),
most commonly 2 weeks. The team’s progress are discussed in time-boxed daily meetings of 15
minutes or less (daily scrums), one of the important practices of the method. At the end of the sprint,
the team holds two further meetings: the sprint review to expose the work done to stakeholders to
elicit feedback, and sprint retrospective for team reflection and improvements. The three roles of
this method are:

A Milestone for sustainable Remote Vehicle Capabilities 186

Agile Service Development

• the Scrum masterwho is accountable for removing impediments to the ability of the team to
deliver the product goals and deliverables. The scrummaster acts as a barrier between the team
and anydistracting influences. The scrummaster ensures that the scrum framework is followed
by coaching the team in scrum theory and concepts and encourages the team to grow and to
improve. The role is also referred as a team facilitator to reinforce these dual perspectives;

• the Product ownerwho is responsible for delivering good business results. The product owner
represents the product’s stakeholders and the voice of the customer. The product owner
decides on product features, adds them to the product backlog, and prioritizes them based
on importance and dependencies;

• the team of Developerswhich is a cross-functional, self-organizing group carrying out all work
required for analysis, design, implementation, testing and deployment building increments of
value at every sprint.

There is also the code refactoring which consists in restructuring existing computer code, i.e.
changing the factoring, without changing its external behavior. It aims to improve the design,
structure, and/or implementation of the software while preserving its (core) functionality. The
advantages of refactoring include improved maintainability, increased extensibility and reduced
complexity. These make a simpler, cleaner, or more expressive internal architecture. Another goal
for refactoring is improved performance. The velocity tracking is another agile method. It is used for
planning sprints, to improve the forecasts for coming iterations and measuring team performance
[Lankhorst, 2012].

2 Agility aspects

[Lankhorst, 2012] identified five aspects of a system’s agility:

• changeability which reflects how easy it is to operate modifications. This aspect is the most
important of agility per definition. It can be decomposed in customizability, adaptability,
analyzability and changeability;

• deployment of these changes which addresses learnability, installability, testability and
manageability of the system. Easily testable systems are important, specially in iterative
development processes where they have to be modified, tested, and deployed regularly;

• resilience to effects of changes, i.e. the impact of these changes on the system’s stability,
which should be minimal and easily corrected if an error occurs. Since agility promotes regular
changes, this aspect is very important as it allows rapid testing and short development cycles;

• interoperability which describes the system’s ability to be deployed quickly and to work with
other systems, at present or in the future, in either implementation or access, without any
restrictions integrating a system with its environment. The use of service contract is a useful
principle to increase this agility aspect;

• portability which reflects how usable the system is in different environments. This aspect is
improved by decoupling the parts of the system from its environment during the design such
that it does not depend on specific implementations of its elements. This also improves the
reusability, an important aspect that allows to replace a building block of a system to quickly
respond to a change.

3 Patterns for agility

After a workshop with experts performing design activities, [Lankhorst, 2012] proposed a set of
patterns to cover the agility aspects discussed in Appendix 2. These are:

• design patterns for the object-oriented design defined in [Gamma et al., 1994] which increase
the extensibility, adaptability and reusability of a software;

A Milestone for sustainable Remote Vehicle Capabilities 187

Agile Service Development

• enterprise application architecture patterns referring to the collection of enterprise software
design from [Fowler and Rice, 2003];

• enterprise integration patterns that focus on using asynchronous communication techniques
for loose coupling of independent applications;

• organizational patterns which describe the management of software development. These
patterns can be divided into two categories:process patterns with focus on developmental
processes, and organizational patternswhich handle organizational structure;

• enterprise architecture management patterns categorized into three main groups, which
are the methodology patterns which address methods for architecture management, the
viewpoint patterns which focus on various ways of describing architectural information and
the information model patternswhich target the storage of architectural information;

• workflow patternswhich examine the modeling perspectives (control and data flow, resource
and exception handling) needed by a workflow or a business process modeling language;

• patterns for e-business: they are classified into five groups, namely business, integration,
composite, application and runtime patterns. The business patterns are high-level patterns,
while the application patterns sharpen these patterns to their implementation in automated
systems. The runtimepatterns specify the logical architecture needed to implement application
patterns. The integration patterns focus on implementation of a whole solution by integrating
individual business patterns. The composite patterns are combinations of business patterns
and integration patterns that occur commonly;

• SOA patterns described in [Erl, 2008] cover:
– patterns for the design, implementation and governance of service inventories;

– patterns for contract design, security, legacy encapsulation, reliability, scalability and
various implementation and governance issues;

– service composition patterns that address the many aspects associated with combining
services into aggregate distributed solutions;

– compound patterns and pattern application sequences;

• ontology design patternswhich focus on the design of knowledge and domain models in the
form of ontologies;

• user interface design patterns that are patterns for layout, navigation, selection, rich
interaction, and social user interface aspects;

• rule patterns address business rule management, consisting of requirements, process,
and architecture on one side, and knowledge elicitation, product selection and application
development on the other side;

• multichannel management patterns describe functional structures for designing
organizational and technical solutions to help organizations to handle the various information
channels for communication with their customers.

A Milestone for sustainable Remote Vehicle Capabilities 188

Bibliography

[Abbott and Fisher, 2015] Abbott, M. L. and Fisher, M. T. (2015). The Art of Scalability: Scalable
Web Architecture, Processes, and Organizations for the Modern Enterprise, chapter 22–24.
Addison-Wesley, 2nd edition.

[ACEA, 2018] ACEA (2018). WLTP facts. http://wltpfacts.eu/. Accessed in February 2019.
[ASAM, 2011] ASAM (2011). Application Programming Interface for MVCI Diagnostic Server.
Programmers Guide – Part 1 of 4, Hoehenkirchen, Germany.

[AUTOSAR, 2019] AUTOSAR (2019). AUTOSAR. Accessed in March 2019.

[SAE, 2018] SAE (2018). Serial Control and Communications Heavy Duty Vehicle Network. Technical
report, SAE International.

[SAE, 2019] SAE (2019). SAE International. Accessed in March 2019.

[Airbrake, 2018] Airbrake (2018). Airbrake: no more searching log files. Airbrake.

[Akehurst, 2018] Akehurst, T. (2018). WireMock: Mock your APIs for fast, robust and comprehensive
testing.

[Almási and Gottlieb, 1989] Almási, G. S. and Gottlieb, A. (1989). Highly Parallel Computing.
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA.

[Alonso et al., 2013] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2013). Web Services:
Concepts, Architectures and Applications, chapter 5–9. Springer-Verlag.

[Amazon, 2018a] Amazon (2018a). Amazon CloudWatch: Complete Visibility of Your Cloud
Resources and Applications. AmazonWeb Services, Inc.

[Amazon, 2018b] Amazon (2018b). AWS X-Ray: analyze and debug production, distributed
applications. AmazonWeb Services, Inc.

[Amdahl, 1967] Amdahl, G. M. (1967). Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA. ACM.

[Andersson et al., 2005] Andersson, A., Fagerberg, R., and Larsen, K. S. (2005). Balanced Binary
Search Trees, pages 10–1–10–28. CRC Press.

[Apache, 2007] Apache (2007). Apache Thrift: A scalable cross-language framework for services
development. Apache Software Foundation. Accessed in November 2017.

[Apache, 2016] Apache (2016). Apache Kafka: A distributed streaming platform. Apache Software
Foundation. Accessed in November 2017.

[Apache, 2018a] Apache (2018a). Apache Flume. Apache Software Foundation.

[Apache, 2018b] Apache (2018b). Apache JMeter. Apache Software Foundation.

[Apache, 2018c] Apache (2018c). Apache Shiro: Simple. Java. Security. Apache Software
Foundation. Accessed in October 2018.

[API, 2017] API (2017). Automotive process institute gmbh. Leipzig, Germany.

[Aslett, 2011] Aslett, M. (2011). How Will The Database Incumbents Respond To NoSQL And
NewSQL? Technical report, The 451 Group. Accessed in July 2019.

A Milestone for sustainable Remote Vehicle Capabilities I

http://wltpfacts.eu/

Bibliography

[Auth0, 2018a] Auth0 (2018a). JSONWeb Tokens. Auth0. Accessed in October 2018.

[Auth0, 2018b] Auth0 (2018b). Passport: Simple, unobtrusive authentication for Node.js. Auth0.
Accessed in October 2018.

[Axerot, 2011] Axerot, T. (2011). Research and development of avehicle simulation platform: Design
of a flexible and versatile architecture for vehicle simulation to satisfy the needs of diagnostic
applications. Master’s thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, Göteborg, Sweden.

[Azarian, 2009] Azarian, A. (2009). A new modular framework for automatic diagnosis of fault,
symptoms and causes applied to the automotive industry. Dissertation, Arts et Métiers ParisTech,
Paris, France.

[Barnett and Tongo, 2008] Barnett, G. and Tongo, L. D. (2008). Data Structures and Algorithms:
Annotated Reference with Examples. O’Reilly Media Inc.

[Bass et al., 2012] Bass, L., Clements, P., and Kazman, R. (2012). Software Architecture in Practice.
Addison-Wesley Publishing Company, Inc., 3rd edition.

[Bavalia, 2016] Bavalia, K. (2016). Concept and implementation of a universal UDS API for modular
use in test environments for vehicle communication tests. Master thesis, Chemnitz University of
Technology, Chemnitz, Germany.

[Beck et al., 2020] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., , Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S.,
Schwaber, K., Sutherland, J., and Thomas, D. (2020). Manifesto for Agile Software Development.
Accessed in January 2020.

[Bernstein and Newcomer, 2009] Bernstein, P. and Newcomer, E. (2009). Principles of Transaction
Processing, chapter 8. Manning Publications Co., 2nd edition.

[Biron and Malhotra, 2004] Biron, P. V. and Malhotra, A. (2004). XML Schema Part 2: Datatypes.
Recommendation, W3C, Massachusetts, United States.

[Bloom, 1970] Bloom, B. H. (1970). Space/Time Trade-offs in Hash Coding with Allowable Errors.
Communications of the ACM, 13(7):422–426.

[Brewer, 2000] Brewer, E. A. (2000). Towards Robust Distributed Systems. In Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’00, page 7,
New York, NY, USA. ACM.

[Brooks, 2014] Brooks, C. (2014). Enterprise NoSQL For Dummies, chapter 2. John Wiley & Sons,
Inc., marklogic special edition.

[Bruce and Pereira, 2018] Bruce, M. and Pereira, P. A. (2018). Microservices in Action. Manning
Publications Co.

[Bueno et al., 2018] Bueno, A. S., Gumbrecht, A., and Porter, J. (2018). Testing Java Microservices.
Manning Publications Co.

[Case et al., 2011] Case, P., Dyck, M., Holstege, M., Amer-Yahia, S., Botev, C., Buxton, S., Doerre,
J., Melton, J., Rys, M., and Shanmugasundaram, J. (2011). XQuery and XPath Full Text 1.0.
Recommendation, W3C, Massachusetts, United States.

[Cattell and Barry, 2000] Cattell, R. G. and Barry, D. K. (2000). The object data standard: ODMG 3.0.
Morgan Kaufmann Publishers Inc., San Francisco, California, USA.

[Chandra, 2015] Chandra, D. G. (2015). BASE analysis of NoSQL database. Future Generation
Computer Systems, 52:13 – 21.

[Chang et al., 2008] Chang, F., Dean, J., Ghemawat, S., C., W. H., Wallach, D. A., Burrows, M.,
Chandra, T., Fikes, A., and Gruber, R. E. (2008). Bigtable: A Distributed Storage System for
Structured Data. ACM Trans. Comput. Syst., 26(2):4:1–4:26.

A Milestone for sustainable Remote Vehicle Capabilities II

Bibliography

[Chang et al., 2006] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M.,
Chandra, T., Fikes, A., and Gruber, R. E. (2006). Bigtable: A Distributed Storage System for
Structured Data. In 7th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 205–218.

[Chen and Babar, 2014] Chen, L. andBabar, M.A. (2014). Towards an Evidence-BasedUnderstanding
of Emergence of Architecture through Continuous Refactoring in Agile Software Development.
IEEE/IFIP Conference on Software Architecture (WICSA), pages 195–204.

[Clemson, 2014] Clemson, T. (2014). Testing Strategies in a Microservice Architecture. https://
martinfowler.com/articles/microservice-testing/. Accessed in August 2018.

[CNCF, 2018a] CNCF (2018a). Envoy: an open source edge and service proxy, designed for
cloud-native applications. The Linux Foundation.

[CNCF, 2018b] CNCF (2018b). Linkerd: The world’s most widely deployed production service mesh.
Buoyant Inc.

[CNCF, 2018c] CNCF (2018c). OpenTracing: vendor-neutral APIs and instrumentation for distributed
tracing. The Linux Foundation.

[Codd, 1970] Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Commun.
ACM, 13(6):377–387.

[Commons, 2019] Commons, C. (2019). BSON. http://bsonspec.org/. Accessed on May 21th, 2019.

[Connolly and Begg, 2015] Connolly, T. M. and Begg, C. E. (2015). Database Systems – A Practical
Approach to Design, Implementation, and Management. Pearson Education, Inc., 6th edition.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction
to Algorithms, chapter 11. The MIT Pres, 3rd edition.

[Cyganiak et al., 2014] Cyganiak, R., Wood, D., and Lanthaler, M. (2014). Resource Description
Framework 1.1 Concepts and Abstract Syntax. Recommendation, W3C, Massachusetts, United
States.

[Damesha, 2015] Damesha, H. S. (2015). Object Oriented Database Management
Systems–Concepts, Advantages, Limitations and Comparative Study with Relational Database
Management Systems. Global Journal of Computer Science and Technology: C Software & Data
Engineering, 15:11–18.

[Datadog, 2018] Datadog (2018). Datadog: modern monitoring & analytics. Datadog.

[Date, 2015] Date, C. J. (2015). SQL and Relational Theory: HowtoWriteAccurate SQL Code, chapter
8 and Appendix F. O’Reilly Media, Inc., 3rd edition.

[Daya et al., 2015] Daya, S., Duy, N. V., Eati, K., Ferreira, C. M., Glozic, D., Gucer, V., Gupta, M., Joshi,
S., Lampkin, V., Martins, M., Narain, S., and Vennam, R. (2015). Microservices from Theory to
Practice: Creating Applications in IBM Bluemix Using the Microservices Approach, chapter 1–4.
IBM Redbooks Publications, 1st edition.

[Dean and Ghemawat, 2004] Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified Data
Processing on Large Clusters. In OSDI’04: Sixth Symposium on Operating System Design and
Implementation, pages 137–150, San Francisco, California.

[DeCandia et al., 2007] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,
Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W. (2007). Dynamo: Amazon’s Highly
Available Key-value Store. SIGOPS Oper. Syst. Rev., 41(6):205–220.

[Denning, 1976] Denning, D. E. (1976). A Lattice Model of Secure Information Flow. Commun. ACM,
19(5):236–243.

[Dragoni et al., 2017] Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F.,
Mustafin, R., and Safina, L. (2017). Microservices: yesterday, today, and tomorrow. CoRR,
abs/1606.04036.

A Milestone for sustainable Remote Vehicle Capabilities III

https://martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/microservice-testing/

Bibliography

[DSGmbH, 2017] DSGmbH (2017). Daten- und Systemtechnik GmbH. Competence in Electronic
Testing, Aachen, Germany.

[Eberspächer et al., 2018] Eberspächer, M., Grimm, M., and Reuss, H. (2018). Centralized
administration of diagnostic and update processes for cloud mirrored vehicles. In 18.
Internationales Stuttgarter Symposium, pages 455 – 466, Wiesbaden, Germany. Springer
FachmedienWiesbaden.

[Ebert and Jones, 2009] Ebert, C. and Jones, C. (2009). Embedded Software: Facts, Figures, and
Future. Computer, 42(4):42–52.

[ECMA, 2013] ECMA (2013). The JSON Data Interchange Format, 1st Edition. Standard ECMA-404,
ECMA International, Geneva, Switzerland. Norm under development as ISO/IEC 21778.

[ECMA, 2017] ECMA (2017). ECMAScript® 2017 Language Specification, 8th Edition. Standard
ECMA-262, ECMA International, Geneva, Switzerland.

[Effros, 2000] Effros, M. (2000). PPM performance with BWT complexity: a fast and effective data
compression algorithm. Proceedings of the IEEE, 88(11):1703–1712.

[Elasticsearch, 2018] Elasticsearch (2018). Logstash: Centralize, Transform & Stash Your Data.
Elasticsearch BV.

[Erl, 2005a] Erl, T. (2005a). A Look Ahead to the Service-OrientedWorld: Defining SOAwhen there’s
no single, official definition. http://weblogic.sys-con.com/node/48928. Accessed in March
2019.

[Erl, 2005b] Erl, T. (2005b). Service-Oriented Architecture: Concepts, Technology, and Design.
Pearson Education, Inc.

[Erl, 2008] Erl, T. (2008). SOA: Principles of Service Design, chapter 1–13. Prentice Hall.

[Etsy, 2018] Etsy (2018). StatsD. Etsy Ireland UC.

[EU, 2015] EU (2015). Commission welcomes Member States’ agreement on robust testing of
air pollution emissions by cars. In Press Release, IP/15/5945. European Commission, Brussels,
Belgium. October 28th, 2015.

[EU, 2016] EU (2016). Regulation (EU) 2016/679 of the european parliament and of the council of 27
April 2016 on the protection of natural personswith regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation) (Text with EEA relevance). In Official Journal of the European Union L 119, 4.5.2016,
pages 1 – 88. European Parliament, Brussels, Belgium.

[EU, 2017a] EU (2017a). Commission delegated regulation (EU) amending Annexes I and II to
Regulation (EC) No 443/2009 of the European Parliament and of the Council for the purpose of
adapting them to the change in the regulatory test procedure for the measurement of CO2 from
light duty vehicles. In C(2017) 3492 final. European Commission, Brussels, Belgium. June 6th,
2017.

[EU, 2017b] EU (2017b). Commission regulation (EU) 2017/1151 of 1 June 2017 supplementing
Regulation (EC) No 715/2007 of the European Parliament and of the Council on type-approval of
motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5
and Euro 6) and on access to vehicle repair and maintenance information, amending Directive
2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No
692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Commission Regulation
(EC) No 692/2008. In Official Journal of the European Union. European Commission. July 7th,
2017.

[Evans and Ingerson, 2001] Evans, C. and Ingerson, B. (2001). YAML – a human friendly data
serialization standard for all programming languages. https://yaml.org/. Accessed on May 21th,
2019.

A Milestone for sustainable Remote Vehicle Capabilities IV

http://weblogic.sys-con.com/node/48928

Bibliography

[Evans, 2003] Evans, E. (2003). Domain-DrivenDesign: Tackling Complexity in theHeart of Software.
Addison-Wesley.

[Faber et al., 2018] Faber, S., Brice, D., Rafael, W., Tim, v. d. L., Marcin, G., and Marcin, Z. (2018).
Mockito: Tasty mocking framework for unit tests in Java.

[Farlex, 2019] Farlex (2019). The Free Dictionary. Accessed in July 2019.

[Fennell, 2014] Fennell, P. (2014). Schematron - More useful than you’d thought. In XML London
2014 – Conference Proceedings, pages 103–111, London, England. XML London.

[Ferraiolo and Kuhn, 1992] Ferraiolo, D. F. and Kuhn, D. R. (1992). Role-Based Access Controls.
National Computer Security Conference, 15th:554–563.

[Fielding, 2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-based
Software Architectures. Dissertation, Department of Information and Computer Science,
University of California, Irvine, USA.

[Flamm, 2018] Flamm, K. (2018). Measuring Moore’s Law: Evidence from Price, Cost, and Quality
Indexes. NBERWorking Papers 24553, National Bureau of Economic Research, Inc.

[Fluentd, 2018] Fluentd (2018). Fluentd: build Your Unified Logging Layer. Fluentd Project.

[Fowler, 2015] Fowler, A. (2015). NoSQL For Dummies, chapter 2, 9–12, 14–16, 19–22, 24, 29,
34–36. JohnWiley & Sons, Inc., 1st edition.

[Fowler, 2010] Fowler, M. (2010). Richardson Maturity Model. https://martinfowler.com/
articles/richardsonMaturityModel.html. Accessed in October 2017.

[Fowler, 2011] Fowler, M. (2011). CQRS. https://martinfowler.com/bliki/CQRS.html. Accessed
in January 2018.

[Fowler, 2014] Fowler, M. (2014). UnitTest. https://martinfowler.com/bliki/UnitTest.html.
Accessed in August 2018.

[Fowler and Rice, 2003] Fowler, M. and Rice, D. (2003). Patterns of Enterprise Application
Architecture. Addison-Wesley Professional, USA.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, USA.

[Ghongade and Pursanis, 2014] Ghongade, R. S. and Pursanis, P. J. (2014). Comparison of Relational
Database and Object Oriented Database. International Journal of Modern Trends in Engineering
and Research, 01(05):27–33.

[Gilbert and Lynch, 2002] Gilbert, S. and Lynch, N. (2002). Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-tolerant Web Services. SIGACT News, 33(2):51–59.

[Glas et al., 2014] Glas, B., Sander, O., Müller-Glaser, K., and Becker, J. (2014). Echtzeitfähige
Car-to-X-Kommunikationsabsicherung und E/E-Architekturintegration. Vernetztes Automobil,
ATZ/MTZ-Fachbuch, pages 70 – 81.

[Google, 2015] Google (2015). gRPC: A high performance, open-source universal RPC framework.
Google. Accessed in November 2017.

[Graham, 2017] Graham, D. H. (2017). Intel® 3D XPointTM Technology Products –- What’s Available
andWhat’s Coming Soon. Accessed in August 2019.

[Gurugé, 2004] Gurugé, A. (2004). Web Services: Theory and Practice. Elsevier Science.

[Gustafson, 1988] Gustafson, J. L. (1988). Reevaluating Amdahl’s Law. Communications of the ACM,
31(5):532–533.

[Gustafson, 2011] Gustafson, J. L. (2011). Gustafson’s Law, pages 819–825. Springer US, Boston,
MA.

[Hady et al., 2017] Hady, F. T., Foong, A., Veal, B., and Williams, D. (2017). Platform Storage
PerformanceWith 3D XPoint Technology. Proceedings of the IEEE, 105(9):1822–1833.

A Milestone for sustainable Remote Vehicle Capabilities V

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/UnitTest.html

Bibliography

[Haleby, 2018] Haleby, J. (2018). REST Assured.

[Han et al., 2011] Han, J., E, H., Le, G., and Du, J. (2011). Survey on NoSQL database. Pervasive
Computing and Applications (ICPCA), pages 363–366.

[HashiCorp, 2012] HashiCorp (2012). HashiCorp Vault: Secure Any Application and Any
Infrastructure. HashiCorp. Accessed in October 2018.

[Hasrouny et al., 2017] Hasrouny, H., Samhat, A. E., Bassil, C., and Laouiti, A. (2017). Vanet security
challenges and solutions: A survey. Vehicular Communications, 7:7 – 20.

[Hellesøy et al., 2018a] Hellesøy, A., Korstanje, M., andWynne, M. (2018a). Cucumber.

[Hellesøy et al., 2018b] Hellesøy, A., Korstanje, M., andWynne, M. (2018b). Gherkin Syntax.

[Hofmeister et al., 2007] Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., andAmerica, P.
(2007). A general model of software architecture design derived from five industrial approaches.
Journal of Systems and Software, 80(1):106 – 126.

[HoneyBadger, 2018] HoneyBadger (2018). Honey Badger: the web developer’s secret weapon!
Honey Badger.

[Huxtable and Schaefer, 2016] Huxtable, J. and Schaefer, D. (2016). On Servitization of the
Manufacturing Industry in theUK. Procedia CIRP, 52(Supplement C):46–51. The Sixth International
Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV2016).

[Idrees et al., 2011] Idrees, M. S., Schweppe, H., Roudier, Y., Wolf, M., Scheuermann, D., and
Henniger, O. (2011). Secure Automotive On-Board Protocols: A Case of Over-the-Air Firmware
Updates, pages 224 – 238. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Intel, 2015] Intel (2015). Intel and Micron Produce Breakthrough Memory Technology. Accessed in
August 2019.

[Intel, 2019] Intel (2019). Intel: Accelerate your data center with ai built in. only on intel. Intel
Corporation.

[ISO, 2008a] ISO (2008a). Road vehicles – Modular Vehicle Communication Interface (MVCI) – Part
1: Hardware design requirements. Technical Report 22900-1:2008(E), ISO, Geneva, Switzerland.

[ISO, 2008b] ISO (2008b). Road vehicles – Open Diagnostic data eXchange (ODX) – Part 1: Data
model specification. Technical Report 22901-1:2008(E), ISO, Geneva, Switzerland.

[ISO, 2009] ISO (2009). Road vehicles – Modular Vehicle Communication Interface (MVCI) – Part 2:
D-PDU API. Technical Report 22900-2:2009(E), ISO, Geneva, Switzerland.

[ISO, 2011a] ISO (2011a). Road vehicles – Open Diagnostic data eXchange (ODX) – Part 2:
Emissions-related diagnostic data. Technical Report 22901-2:2011(E), ISO, Geneva, Switzerland.

[ISO, 2011b] ISO (2011b). Road vehicles – Open Test sequence eXchange (OTX) – Part 1: General
information and use cases. Technical Report 13209-1:2011(E), ISO, Geneva, Switzerland.

[ISO, 2011c] ISO (2011c). Systems and software engineering – Architecture description. Technical
Report ISO/IEC/Acrshortieee 42010:2011, ISO, Geneva, Switzerland.

[ISO, 2011d] ISO (2011d). Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System and software quality models. Technical Report
ISO/IEC 25010:2011, ISO, Geneva, Switzerland.

[ISO, 2012a] ISO (2012a). Road vehicles – Modular Vehicle Communication Interface (MVCI) – Part
3: D-Server API. Technical Report 22900-3:2012(E), ISO, Geneva, Switzerland.

[ISO, 2012b] ISO (2012b). Road vehicles – Open Test sequence eXchange (OTX) – Part 2: Core
data model specification and requirements. Technical Report 13209-2:2012(E), ISO, Geneva,
Switzerland.

[ISO, 2012c] ISO (2012c). Road vehicles – Open Test sequence eXchange (OTX) – Part 3: Standard
extensions and requirements. Technical Report 13209-3:2012(E), ISO, Geneva, Switzerland.

A Milestone for sustainable Remote Vehicle Capabilities VI

Bibliography

[ISO, 2013a] ISO (2013a). Road vehicles – Unified Diagnostic Services (UDS) – Part 1: Specification
and requirements. Technical Report 14229-1:2013(E), ISO, Geneva, Switzerland.

[ISO, 2013b] ISO (2013b). Road vehicles – Unified Diagnostic Services (UDS) – Part 2: Session layer
services. Technical Report 14229-2:2013(E), ISO, Geneva, Switzerland.

[ISO, 2016a] ISO (2016a). Information technology – Document Schema Definition Language (DSDL)
– Part 3: Rule-based validation – Schematron. Technical Report ISO/IEC 19757-3:2016, ISO,
Geneva, Switzerland.

[ISO, 2016b] ISO (2016b). Information technology – Database languages – SQL – Part 1: Framework
(SQL/Framework). Technical Report ISO/IEC 9075-1:2016, ISO, Geneva, Switzerland.

[Jacobson, 2013] Jacobson, R. (2013). 2.5 quintillion bytes of data created every day. Howdoes CPG
& Retail manage it? Industry insights, IBM. Accessed in August 2019.

[JBoss, 2018] JBoss (2018). Arquillian: So you can rule your code. Not the bugs. JBoss Community.

[Johanson et al., 2011] Johanson, M., Dahle, P., and Söderberg, A. (2011). Remote Vehicle
Diagnostics over the Internet using the DoIP Protocol. The Sixth International Conference on
Systems and Networks Communications (ICSNC), Barcelona, Spain, pages 226 – 231.

[JSON, 2017] JSON (2017). Introducing JSON. http://json.org/. Accessed on October 4th, 2017.

[Kickstarter, 2019] Kickstarter (2019). OBDLink MX Wi-Fi: A Wireless Gateway to Vehicle OBD
Networks. Accessed in March 2019.

[Kilpeläinen, 2012] Kilpeläinen, P. (2012). Using XQuery for problem solving. Software: Practice and
Experience, 42(12):1433–1465.

[Kleberger, 2012] Kleberger, P. (2012). A Structured Approach to Securing the Connected Car. Thesis
for the degree of licentiate of engineering, Department of Computer Science and Engineering,
Chalmers University of Technology, Göteborg, Sweden.

[Kleberger and Olovsson, 2013] Kleberger, P. and Olovsson, T. (2013). Protecting Vehicles Against
Unauthorised Diagnostics Sessions Using Trusted Third Parties. In Bitsch, F., Guiochet, J., and
Kaâniche, M., editors, Computer Safety, Reliability, and Security, pages 70 – 81, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[Kleppmann, 2017] Kleppmann, M. (2017). Designing Data-Intensive Applications, chapter 4, 6.
O’Reilly Media Inc.

[Krützfeldt, 2014] Krützfeldt, M. S. (2014). Verfahren zur Analyse und zum Test von
Fahrzeugdiagnosesystemen im Feld. Dissertation, Stuttgart University, Stuttgart, Germany.

[Kubacki, 2009] Kubacki, W. M. (2009). SQL vs. “NoSQL”.

[Kuchana, 2004] Kuchana, P. (2004). Software Architecture Design Patterns in Java. Auerbach
Publications.

[Lamport, 1979] Lamport, L. (1979). How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690–691.

[Lankhorst, 2012] Lankhorst, M. (2012). Agile Service Development – Combining Adaptive Methods
and Flexible Solutions. Springer Science & Business Media, Berlin Heidelberg.

[Li and Manoharan, 2013] Li, Y. and Manoharan, S. (2013). A performance comparison of SQL and
NoSQL databases. Communications, Computers and Signal Processing (PACRIM), pages 15–19.

[Limaye, 2009] Limaye, M. G. (2009). Software testing: Principles, Techniques and Tools. McGraw
Hill Education.

[Mahmud et al., 2005] Mahmud, S. M., Shanker, S., and Hossain, I. (2005). Secure Software Upload
in an Intelligent Vehicle viaWireless Communication Links. In IEEE Intelligent Vehicles Symposium,
pages 588 – 593, Las Vegas, USA. IEEE.

[Martin, 1995] Martin, R. C. (1995). Designing Object-Oriented C++ Applications: Using the Booch
Method. Prentice-Hall.

A Milestone for sustainable Remote Vehicle Capabilities VII

Bibliography

[McCool et al., 2012] McCool, M., Robison, A. D., and Reinders, J. (2012). Structured Parallel
Programming: Patterns for Efficient Computation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[McCreary and Kelly, 2013] McCreary, D. and Kelly, A. (2013). Making Sense of NoSQL – A Guide for
Managers and the Rest of Us. Manning Publications Co.

[McGovern et al., 2003] McGovern, J., Tyagi, S., Stevens, M. E., and Mathew, S. (2003). Java Web
Services Architecture. The Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann Publishers Inc., San Francisco.

[Mehnen et al., 2017] Mehnen, J., He, H., Tedeschi, S., and Tapoglou, N. (2017). Practical Security
Aspects of the Internet of Things. In Cybersecurity for Industry 4.0: Analysis for Design and
Manufacturing, pages 225–242. Springer International Publishing.

[Melnikov and Zeilenga, 1997] Melnikov, A. and Zeilenga, K. D. (1997). Simple Authentication and
Security Layer (SASL). Standard, Network Working Group. Accessed in September 2019.

[MemSQL, 2017] MemSQL (2017). Distributed SQL. Accessed in September 2019.

[Menezes et al., 2001] Menezes, A. J., Oorschot, P. C. V., and Vanstone, S. A. (2001). Handbook of
Applied Cryptography, chapter 6–7, 11. CRC Press, 5th edition.

[Micron, 2019] Micron (2019). Micron: Redefining what’s possible. Micron Technology, Inc.

[Mock et al., 2014] Mock, P., Kühlwein, J., Tietge, U., Franco, V., Bandivadekar, A., and German, J.
(2014). The WLTP: How a new test procedure for cars will affect fuel consumption values in the
EU. In ICCT Publications, Berlin, Germany. International Council on Clean Transportation. White
Paper.

[MongoDB, 2017] MongoDB (2017). Mongodb: a document-oriented database. MongoDB Inc., New
York, United States.

[MongoDB, 2018] MongoDB (2018). Mongodb architecture guide. MongoDB Inc., NewYork, United
States.

[MongoDB, 2019] MongoDB (2019). NoSQL database security. MongoDB Inc., New York, United
States.

[Much, 2011] Much, A. (2011). Removing Run-Time Errors from AUTOSAR Components Using
Polyspace Code Verifiers. Technical report, Elektrobit. Accessed in March 2019.

[Nadareishvili et al., 2016] Nadareishvili, I., Mitra, R., McLarty, M., and Amundsen, M. (2016).
Microservice Architecture: Aligning Principles, Practices, and Culture. O’Reilly Media, Inc.

[NCCIC, 2009] NCCIC (2009). Understanding Digital Signatures. Accessed in September 2019.

[Ndashimye et al., 2017] Ndashimye, E., Ray, S. K., Sarkar, N. I., and Gutiérrez, J. A. (2017).
Vehicle-to-infrastructure communication over multi-tier heterogeneous networks: A survey.
Computer Networks, 112:144 – 166.

[Neo4j, 2019] Neo4j (2019). Concepts: NoSQL to Graph. Accessed in September 2019.

[Netflix, 2013] Netflix (2013). Feign makes writing java http clients easier.
https://github.com/OpenFeign/feign. Accessed on October 4th, 2017.

[Neumann et al., 2017] Neumann, A., Mytych, M. J., Wesemann, D., Wisniewski, L., and Jasperneite,
J. (2017). Approaches for In-vehicle Communication – An Analysis and Outlook. In Computer
Networks: 24th International Conference, CN 2017, pages 395–411. Springer International
Publishing.

[Newman, 2015] Newman, S. (2015). Building Microservices: Designing fine-grained systems,
chapter 1, 3–5 and 12. O’Reilly Media, Inc., 1st edition.

[NewRelic, 2018] NewRelic (2018). New Relic: know right now. New Relic.

[Nikhil and Arvind, 2001] Nikhil, R. S. and Arvind (2001). Implicit Parallel Programming in pH.
Morgan Kaufmann Publishers Inc.

A Milestone for sustainable Remote Vehicle Capabilities VIII

Bibliography

[Nilsson and Larson, 2008] Nilsson, D. K. and Larson, U. E. (2008). Secure Firmware Updates
over the Air in Intelligent Vehicles. In ICC Workshops - 2008 IEEE International Conference on
Communications Workshops, pages 380 – 384, Beijing, China. IEEE.

[Nilsson et al., 2008] Nilsson, D. K., Phung, P. H., and Larson, U. E. (2008). Vehicle ECU classification
based on safety-security characteristics. In IETRoadTransport Information andControl Conference
and the ITS United Kingdom Members’ Conference, pages 1 – 7, Manchester, United Kingdom. IET
- Institution of Engineering and Technology.

[OASIS, 2012] OASIS (2012). Reference Architecture Foundation for Service Oriented Architecture.
OASIS Committee Specification 01. Version 1.0.

[Oliveira and Bernardino, 2017] Oliveira, J. and Bernardino, J. (2017). NewSQLDatabases - MemSQL
and VoltDB Experimental Evaluation. In Proceedings of the 9th International Joint Conference
on Knowledge Discovery, Knowledge Engineering and Knowledge Management, pages 276–281.
INSTICC, SciTePress - Science and Technology Publications.

[Open_Group, 1991] Open_Group (1991). Distributed Transaction Processing: The XA Specification.
The Open Group.

[OpenZipkin, 2018] OpenZipkin (2018). Zipkin: a distributed tracing system. OpenZipkin OSS.
[Pääkkönen and Pakkala, 2015] Pääkkönen, P. and Pakkala, D. (2015). Reference Architecture and
Classification of Technologies, Products and Services for Big Data Systems. Big Data Research,
2(4):166–186.

[Pact, 2018] Pact (2018). Fluentd: build Your Unified Logging Layer. Pact Fundation.
[Padilla, 2019] Padilla, A. (2019). Chapter 10. Digital Signatures. Accessed in September 2019.
[Papadimitratos et al., 2008] Papadimitratos, P., Buttyan, L., Holczer, T., Schoch, E., Freudiger, J.,
Raya, M., Ma, Z., Kargl, F., Kung, A., and Hubaux, J. (2008). Secure vehicular communication
systems: design and architecture. IEEE Communications Magazine, 46(11):100 – 109.

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley
Publishing Company, Inc.

[Parecki, 2018] Parecki, A. (2018). OAuth 2.0 Servers: the modern standard for securing access to
APIs. okta. Accessed in October 2018.

[Pavlo and Aslett, 2016] Pavlo, A. and Aslett, M. (2016). What’s Really Newwith NewSQL? SIGMOD
Rec., 45(2):45–55.

[Petri et al., 2016] Petri, R., Springer, M., Zelle, D., McDonald, I., Fuchs, A., and Krauß, C. (2016).
Evaluation of Lightweight TPMs for Automotive Software Updates over the Air. 4th escar,
Embedded Security in Cars Conference (escar), Detroit, USA.

[Pike, 2012] Pike, R. (2012). Concurrency is not Parallelism. Accessed in October 2019.
[Pivotal, 2018a] Pivotal (2018a). Micrometer application monitoring: vendor-neutral application
metrics facade. Pivotal Software, Inc.

[Pivotal, 2018b] Pivotal (2018b). Spring Boot: build anything. Pivotal Software, Inc.
[Poaka et al., 2020] Poaka, V., Hartmann, S., Seggelke, N., and Bochinski, M. (2020). New
architectural design of the runtime server for remote vehicle communication services. SAE
International Journal of Connected and Automated Vehicles, 3(1):19–26.

[Preston-Werner, 2009] Preston-Werner, T. (2009). Semantic versioning 2.0.0. https://semver.
org/spec/v2.0.0.html. Accessed in December 2017.

[Prometheus, 2018] Prometheus (2018). Prometheus: from metrics to insight. Prometheus.
[Raconteur, 2019] Raconteur (2019). ADay inData. Industry insights, RaconteurMedia Ltd. Accessed
in August 2019.

[Raddats et al., 2016] Raddats, C., Baines, T., Burton, J., Story, V. M., and Zolkiewski, J. (2016).
Motivations for servitization: the impact of product complexity. International Journal of
Operations & Production Management, 36(5):572–591.

A Milestone for sustainable Remote Vehicle Capabilities IX

https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html

Bibliography

[Rauber and Rünger, 2013] Rauber, T. and Rünger, G. (2013). Parallel Programming for Multicore
and Cluster Systems. Springer-Verlag Berlin Heidelberg, Berlin, Germany, 2nd edition.

[Raygun, 2018] Raygun (2018). Raygun: error, crash and performance monitoring for software
teams. Raygun Inc.

[Raz, 1995] Raz, Y. (1995). The Dynamic Two Phase Commitment (D2PC) protocol. In Database
Theory — ICDT ’95: 5th International Conference Prague, Czech Republic, pages 162–176, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[RedBend, 2011] RedBend (2011). Updating Car ECUs Over-The-Air (FOTA). Technical report, Red
Bend Software. White Paper.

[Richards, 2015] Richards, M. (2015).Microservices vs. Service-OrientedArchitecture. O’ReillyMedia,
Inc.

[Richardson, 2018] Richardson, C. (2018). Microservice Patterns. Manning Publications Co.
[Richardson and Ruby, 2007] Richardson, L. and Ruby, S. (2007). ReSTful Web Services. O’Reilly
Media Inc.

[Robie and Bartels, 1994] Robie, J. and Bartels, D. (1994). A comparison between relational and
object oriented databases for object oriented application development. In POET Publications,
Karlsruhe, Germany. POET Software Corporation. White Paper.

[Robie et al., 2011] Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J., and Siméon, J. (2011).
XQuery Update Facility 1.0. Recommendation, W3C, Massachusetts, United States.

[Rollbar, 2018] Rollbar (2018). Rollbar: catch errors before your users do. Rollbar Inc.
[Roscoe, 2012] Roscoe, T. (2012). Multicore andMultikernels Advanced Operating Systems. Lecture,
ETH Zurich. Accessed in August 2019.

[Rotem-Gal-Oz, 2012] Rotem-Gal-Oz, A. (2012). SOA Patterns, chapter 2, 4–7. Manning
Publications Co.

[Russo, 2016] Russo, C. (2016). Automobilbranche im Wandel. Technical report, Roland Berger
GmbH. Accessed in October 12th, 2017.

[Saleh, 2009] Saleh, K. A. (2009). Software Engineering. J. Ross Publishing.
[Sandhu, 1993] Sandhu, R. S. (1993). Lattice-based access control models. Computer, 26(11):9–19.
[Scheidt and Domangue, 2006] Scheidt, E. M. and Domangue, E. (2006). Multiple factor-based user
identification and authentication. US Patent 7,131,009.

[Scott, 2014] Scott, J. (2014). Putting Business Capabilities to Work. Webinar, Object Management
Group.

[Sentry, 2018] Sentry (2018). Sentry: stop hoping your users will report errors. Functional Software,
Inc.

[Siemens, 2015] Siemens (2015). Vehicle-to-X (V2X) communication technology. Technical report,
Siemens AG, Munich, Germany.

[Siemens, 2018] Siemens (2018). Connected Vehicle Road-Side Unit (RSU). Accessed in March 2019.
[Silberschatz et al., 2012] Silberschatz, A., Galvin, P. B., and Gagne, G. (2012). Operating System
Concepts. Wiley Publishing, 9th edition.

[Skeen and Stonebraker, 1983] Skeen, D. and Stonebraker, M. (1983). A Formal Model of Crash
Recovery in a Distributed System. IEEE Transactions on Software Engineering, SE-9(3):219–228.

[Skillicorn, 1991] Skillicorn, D. B. (1991). Models for practical parallel computation. International
Journal of Parallel Programming, 20(2):133–158.

[Slee et al., 2007] Slee, M., Agarwal, A., and Kwiatkowski, M. (2007). Thrift: Scalable cross-language
services implementation. Technical report, Facebook.

[SmartBear, 2011] SmartBear (2011). Swagger: The Best APIs are Built with Swagger Tools.
https://swagger.io/. Accessed on October 4th, 2017.

A Milestone for sustainable Remote Vehicle Capabilities X

Bibliography

[Snyder et al., 2011] Snyder, B., Bosanac, D., and Davies, R. (2011). ActiveMQ in Action, chapter 1
and 5. Manning Publications Co.

[Softing, 2011] Softing (2011). MVCI Server at Daimler AG. In Automotive News, Haar, Germany.
Softing AG.

[Spuler and Sajeev, 1994] Spuler, D. A. and Sajeev, A. S. M. (1994). Compiler Detection of Function
Call Side Effects. Technical report, Department of Computer Science, James Cook University,
Townsville, Australia.

[Steger et al., 2018] Steger, M., Boano, C. A., Niedermayr, T., Karner, M., Hillebrand, J., Roemer, K.,
and Rom, W. (2018). An Efficient and Secure Automotive Wireless Software Update Framework.
IEEE Transactions on Industrial Informatics, 14(Issue 5):2181 – 2193.

[Stonebraker and Cattell, 2011] Stonebraker, M. and Cattell, R. (2011). 10 Rules for Scalable
Performance in ’Simple Operation’ Datastores. Commun. ACM, 54(6):72–80.

[Stonebraker et al., 2007] Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos, S., Hachem, N.,
and Helland, P. (2007). The End of an Architectural Era: (It’s Time for a Complete Rewrite). In
Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB ’07, pages
1150–1160. VLDB Endowment.

[Strauch and Kriha, 2011] Strauch, C. and Kriha, W. (2011). NoSQL Databases, chapter 2. Stuttgart
Media University, Stuttgart, Germany.

[Strozzi, 1998] Strozzi, C. (1998). NoSQL – A Relational Database Management System. Blog,
Creative Commons. Accessed in August 2019.

[Subke, 2008] Subke, P. (2008). Implementation examples of ASAM MCD in the process chain. In
Automotive Testing Expo Europe, Haar, Germany. Softing AG.

[Supke, 2011a] Supke, J. (2011a). ASAM MCD D-Server in the Process Chain. Technical report,
emotive GmbH, Stuttgart, Germany. Accessed in October 2017.

[Supke, 2011b] Supke, J. (2011b). Diagnosesysteme im Automobil: OTX - Open Test sequence
eXchange. Technical report, emotive GmbH, Stuttgart, Germany. Accessed in February 2018.

[Supke, 2011c] Supke, J. (2011c). Einführung in die Anwendungen für Diagnose (ASAM MCD).
Technical report, emotive GmbH, Stuttgart, Germany. Accessed in July 2018.

[Supke andWerner, 2011a] Supke, J. andWerner, Z. (2011a). Diagnosesysteme im Automobil: ODX
– Open Diagnostic data eXchange nach ISO 22901-1. Technical report, emotive GmbH, Stuttgart,
Germany.

[Supke andWerner, 2011b] Supke, J. and Werner, Z. (2011b). Diagnosesysteme im Automobil:
Standardisiertes Diagnoselaufzeitsystem nach ISO 22900. Technical report, emotive GmbH,
Stuttgart, Germany.

[Thompson et al., 2004] Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2004). XML
Schema Part 1: Structures. Recommendation, W3C, Massachusetts, United States.

[Thym, 2007] Thym, J. (2007). Standardisierung der Diagnoseprozessketten in der
Fahrzeugelektronik — Ein Statusbericht. Technical Report 2, Softing AG.

[Valipour et al., 2009] Valipour, M. H., Amirzafari, B., Maleki, K. N., and Daneshpour, N. (2009). A
brief survey of software architecture concepts and service oriented architecture. In 2009 2nd IEEE
International Conference on Computer Science and Information Technology, pages 34–38. IEEE.

[van Steen and Tanenbaum, 2017] van Steen, M. and Tanenbaum, A. S. (2017). Distributed systems:
principles and paradigms, chapter 2. Maarten van Steen, 3rd edition.

[Videla andWilliams, 2012] Videla, A. and Williams, J. J. (2012). RabbitMQ in Action: Distributed
Messaging for Everyone, chapter 2. Manning Publications Co.

[Volkswagen, 2016] Volkswagen (2016). DoIP Systembeschreibung. Volkswagen AG, Wolfsburg,
Germany.

A Milestone for sustainable Remote Vehicle Capabilities XI

Bibliography

[Volkswagen, 2017] Volkswagen (2017). VW-MCD – ODX-Converter: Transformator von ODX-Daten
der Standardversionen 2.0.1, 2.1 und 2.2. Volkswagen AG, Wolfsburg, Germany. Version 10.0.0.

[Volkswagen, 2018a] Volkswagen (2018a). Dataplug für smartphones. Technical report, Volkswagen
Group.

[Volkswagen, 2018b] Volkswagen (2018b). Volkswagen connect – drive smarter. Technical report,
Volkswagen Group.

[Volkswagen, 2018c] Volkswagen (2018c). VW-MCD–MCD-Kernel: Implementierung des Standards
ASAM MCD-3 D 3.0.0. Volkswagen AG, Wolfsburg, Germany. Version 10.2.0.

[Walsh et al., 2017] Walsh, N., Snelson, J., and Coleman, A. (2017). XQuery and XPath Data Model
3.1. Recommendation, W3C, Massachusetts, United States.

[Wang, 2013] Wang, Z. (2013). System, device and method of remote vehicle diagnostics based
service for vehicle owners. US Patent App. 13/791,923.

[Weikum and Vossen, 2001] Weikum, G. and Vossen, G. (2001). Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery, chapter 19. Morgan
Kaufmann Publishers Inc., 1st edition.

[Werner and Ralf, 2014] Werner, Z. and Ralf, S. (2014). Bussysteme in der Fahrzeugtechnik –
Protokolle, Standards und Softwarearchitektur, chapter 1–6 and 9. Springer Vieweg, 5th edition.

[West, 2010] West, M. (2010). Developing High Quality Data Models. Morgan Kaufmann Publishers
Inc., San Francisco, California, USA, 1st edition.

[Wiesbaden, 2013] Wiesbaden, S. F. (2013). AUTOSAR — The Worldwide Automotive Standard for
E/E Systems. ATZextra worldwide, 18(9):5–12.

[Williams, 2018] Williams, M. (2018). WLTP regulations: Testing times. https://
automotivelogistics.media/intelligence/testing-times. Accessed in February 2019.

[Willmore, 2013] Willmore, F. (2013). Introduction to Parallel Computing. Lecture, Texas Advanced
Computing Center.

[Wimmer, 2016] Wimmer, E. (2016). Der technologische Wandel und seine Auswirkungen auf die
Automobilindustrie. Technical report, e&Co. AG.

[Wirth, 1978] Wirth, N. (1978). Algorithms+ Data Structures= Programs. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

[Woodard, 2013] Woodard, L. (2013). Introduction to Parallel Programming. Lecture, Cornell
University - Center for Advanced Computing.

[XimpleWare, 2015] XimpleWare (2015). VTD-XML: The Future of XML Processing.
https://vtd-xml.sourceforge.io/. Accessed on October 4th, 2017.

[Yang et al., 2015] Yang, L., Vicente, F., Campestrini, A., German, J., and Mock, P. (2015). NOx control
technologies for Euro 6 diesel passenger cars: Market penetration and experimental performance
assessment. In ICCT Publications, Berlin, Germany. International Council on Clean Transportation.
White Paper.

[Yang et al., 2016] Yang, L., Zhang, S., Wu, Y., Chen, Q., Niu, T., Huang, X., Zhang, S., Zhang, L., Zhou,
Y., and Hao, J. (2016). Evaluating real-world CO2 andNOx emissions for public transit buses using a
remotewirelessOn-BoardDiagnostics (OBD) approach. Environmental Pollution, 218(Supplement
C):453 – 462.

[Zhang et al., 2010] Zhang, X., Lin,W. C., Zhang, Y., Salman, M.A., Chin, Y., Holland, S.W., andHowell,
M. N. (2010). Proactive vehicle system management and maintenance by using diagnostic and
prognostic information. US Patent App. 12/190,322.

[Zhu and Tung, 2006] Zhu, L. and Tung, B. (2006). Public Key Cryptography for Initial Authentication
in Kerberos (PKINIT). Standard, Network Working Group. Accessed in September 2019.

[Ziegel, 2015] Ziegel, M. (2015). Standardisiertes Laufzeitsystemmit ODX undOTX. Technical report,
Softing AG, Haar, Germany.

A Milestone for sustainable Remote Vehicle Capabilities XII

https://automotivelogistics.media/intelligence/testing-times
https://automotivelogistics.media/intelligence/testing-times

Afterword

The key to good decision making is not
knowledge. It is understanding.

– Malcolm Gladwell

When we applied for this research program, the intention was to build a system on the diversity
of engineering sciences we have learned in our studies so far. By combining knowledge in various
fields in computer science, we aim to build up a sustainable solution which fulfills functional
objectives and requirements while taking into consideration the limitations imposed by regulation,
practicality, cost and safety. The automotive industry stands out to us as the perfect environment
for this research work. We were impressed by the company’s innovative projects that focus on
improving mobility solutions and user experience worldwide through up-to-date technologies and
the company’s willingness to offer only the best to its customers.

Our dissertation was built in a context of smart mobility which requires secure communication
between the third-parties involved in the vehicle’s life cycle. Smart mobility implements an optimal
use of energyand resources and remotevehicle capabilities amongothers. An extensive investigation
has allowed us to design, implement and evaluate a Software Architecture that supports this
future-oriented-mobility, answers the research questions we identified and allows automakers to
be ahead of competition in a very challenging market. This research was a journey punctuated by
various challenges and difficulties, during which we have also learned a lot both personally and
professionally.

This work would not have been possible without support and help of people whom we would
like to thank. We will start with the Head of Department at the company at that time who offered
us the opportunity to carry out this work within his team. The guidelines, the professional rigor
imposed within his department as well as sound advice were a great help to us. The same gratitude
goes to his deputies who always took time for weekly reviews of our work to be sure we are on the
right track during this research work as well as for proofreading. We are also very grateful to our
Supervisor from the Department of Computer Science at the Technical University of Clausthal, for
his incomparable kindness, patience, continual help, enlightened opinions and all the work sessions
during which various ideas have been sharpened. We thank also the two examiners very much for
their time to review and evaluate our work.

We would also like to thank our colleagues not only for the warm welcome in the team, but
also for the friendly environment and collegiality that allowed us to unleash our potential in Software
Engineering. Our gratitude goes also to our brothers and sisters as they are the ones we know we
can rely on, even in difficult times. Last but not the least important, we owe thanks to all PhD
students for their constructive discussions during our colloquiums, our friends from Cameroon to
Clausthal-Zellerfeld and beyond who supported us, the aunts, uncles, cousins and others family
members that were on our side whenwe started this journey, and all others who have contributed in
any way to this achievement. It is an honor to make you all proud of us. May God bless us all.

A Milestone for sustainable Remote Vehicle Capabilities XIII

	Abstract
	Dedication
	Contents
	List of Algorithms
	List of Figures
	List of Tables
	Acronyms
	I Context, Background & Objectives
	Introduction
	Motivations
	Goal of this thesis
	Objectives
	Goal of this thesis

	Contributions of this thesis
	Cost-efficiency & Compatibility
	Scalability & Availability
	Runtime Complexity

	Non-functional requirements
	Security
	Compatibility
	User roles
	Data consistency
	Quality attributes
	Maintainability & Extensibility

	Outline of this thesis

	II Fundamentals
	Norms & Standards in Automotive Industry
	Vehicle diagnostic and vehicle communication
	Diagnostic protocols
	Diagnostic workflow
	Diagnostic services

	Standardization organizations
	ISO 22901-1: ODX – Data model specification
	ECU's life cycle
	Overview of the ODX components
	Diagnostic layers inheritance
	ODX file types
	ODX Catalog
	Special Data Group
	Administrative data
	Audience class

	Advantages of ODX format
	ECU system suppliers
	Engineering at vehicle manufacturer
	Production at vehicle manufacturer
	Vehicle manufacturer service department and dealerships
	Test equipment manufacturers
	Franchise and aftermarket dealerships
	Legal authorities

	Standard communication between the ODX life cycle's third-parties
	ISO 22900-2: D-PDU API
	ISO 22900-3: D-Server API
	D-Server
	One use case example of the D-Server
	D-Server's architecture

	Current implementations
	Advantages of the runtime data format
	Some implementations

	Summary

	Microservice-Oriented Architecture
	Cloud Microservices
	Definitions
	Microservice-oriented architecture vs. SOA
	Microservice design principles
	Advantages of Microservices
	Drawbacks of microservices

	How to detect Microservices boundaries
	Domain Driven Design
	Business capability-based decomposition
	Sub-domain-based decomposition
	Complementary decomposition principles

	Microservices Inter-communication
	Communication styles
	Message formats
	Interaction via APIs
	How to improve the system resilience

	Inter-process interaction technologies
	ReST communication model
	The gRPC framework
	Apache Thrift
	Message-based communication

	Service Discovery
	Application-side service discovery
	Platform-side service discovery

	Summary

	Data persistence in a MOA
	Distributed Transactions
	The two-phase commit
	Variants of the two-phase commit
	The two-phase commit and Microservices

	The Saga pattern
	Achieving atomicity through an Event datastore
	Achieving atomicity through Transaction log
	Workflodize-based Saga
	Orchestration-based Saga
	Reservation-based Saga
	Choreography-based Saga
	Consistency patterns

	How to handle Queries in a Microservice-based architecture
	Composition Pattern
	CQRS

	Summary

	Microservice Utilities
	Microservice Framework
	Microservice Chassis
	Purposes of a Microservice Chassis
	Design a Microservice Chassis

	Tests in a MOA
	Classification of testing methods
	Testing procedures of a microservice

	Guidelines for Microservice testing
	Unit testing of a service
	Integration testing of a service
	Component testing of a service
	End-to-end testing of a service

	Summary

	Databases and Data Schemas
	DBMS and Data Architecture Pattern
	Relational DBMSs
	Query and Data Languages
	Working principle
	Handling data with Transactions
	Advantages
	Limitations
	Scalability in RDBMSs

	NoSQL DBMSs
	Definitions and Properties
	Characteristics of NoSQL datastores
	NoSQL advantages
	NoSQL limitations
	Optimizations at the low-level
	Consistent hashing
	Data consistency in NoSQL systems
	Architectural Comparison
	Comparison summary

	Categories of NoSQL
	Key-value datastores
	Graph datastores
	Differences between Graph datastores and Triple stores
	Advantages of graph datastores

	Column family datastores
	Document datastores
	Data sharding
	Extraction of metadata
	Evaluation of document datastores
	Data consolidation

	Some uses of NoSQL datastores
	Bottom line of NoSQL datastores

	XML datastores
	Compatibility with many types of documents
	Use of Standards & Triggers
	Flexibility and Security policies
	XQuery
	Efficient document update through XQuery
	Full-text search capabilities

	Data validation in XML Datastores

	Best practices in NoSQL DBMSs
	Moving queries to data
	Hash rings
	Replication
	Federated Search

	Data Security
	Security requirements
	Authentication
	Authorization
	Audit
	Encryption

	RBAC
	LBAC
	ABAC
	Using Data Warehouses and OLAP tools
	Application- vs. Database-level Security policies
	Using the API gateway

	Information search in NoSQL DBMSs
	Types of search
	Definition of terms
	Extended types of search

	Effective Search Strategies
	Algorithm-based strategies
	Structure-based strategy

	Other types of DBMSs
	ODBMS
	Advantages of ODBMSs
	Limitations

	NewSQL Databases
	Hybrid DBMS
	Advantages of Hybrid Datastores
	Limitations of Hybrid Datastores

	Summary

	III The Dictionary Server
	Dictionary Server
	Architecture Design Activities
	Dictionary Server Design
	Advantages of the Dictionary Server
	Architecture Design of the Dictionary Server
	Building blocks of the Dictionary Server
	Dictionary Extractor
	ODX Dictionary
	Dictionary Service
	Dictionary Communication Interface

	Main algorithms
	Data extraction algorithm
	ODX file parsing
	Values extraction algorithm
	Bulk insertion of values

	Whole picture
	Relevant data type for vehicle diagnostic
	Data Workflow during a vehicle diagnostic session
	Coordination of tasks
	Identification phase
	Search phase
	Computation phase

	Sequence diagram of a vehicle diagnostic session

	Design of the the diagnostic levels
	Security in the Dictionary Server
	Driver role
	Remote Assistant role
	Technician role
	Advanced Technician role
	Campaign Manager
	Data Analyst

	Summary

	Dictionary Database
	Core entities of the Data Model Design
	Diagnostic Services
	Data structure of a diagnostic service
	Diagnostic Service Properties
	Parameter
	Request
	Response

	Functional addressing
	Logical Link
	ECU Job
	Diagnostic Trouble Code
	Computational Method
	Complex DOP
	ECU Memory Programming
	Programming Session
	Datablock
	Flashdata
	Physical Memory
	Memory Connector
	Programming procedure
	Upload process

	ECU Configuration
	Library

	Data Model of the Dictionary Database
	Data Model for DTCs translation
	Data Models for PDUs
	Data Models for ECU Jobs

	Summary

	Implementation
	Security in a Microservice architecture
	Authentication
	Authorization

	Configurability of a Microservice
	Push Model
	Pull Model

	Observability of a Microservice
	Health Check API pattern
	Log Aggregation pattern
	Distributed Tracing pattern
	Application Metrics pattern
	Exception Tracking pattern
	Audit Logging pattern

	Dictionary Server Micro-design
	Controller
	Selector
	Business Logic
	Repository Manager

	Dictionary Server Logical Architecture
	Dictionary Service Architecture
	Core Services
	Extended Services
	Interaction with Infrastructure Services

	Dictionary Gateway Architecture

	Dictionary Server Security Measures
	Summary

	IV Development, Tests & Results
	Development environment
	Parallel computing
	Definitions
	Types of parallel programming models
	Not every algorithm is parallelizable
	Weak scaling
	Strong vs. Weak scaling
	Reality might be even worse

	What if...
	... we used a RDBMS?
	... we used a Key-value DBMS?
	... we used a Graph DBMS?
	... we used a Column family DBMS?
	... we used a Document DBMS?

	Summary of computational complexities
	Development of Dictionary Server
	Parsing Technology
	Business Logic
	Domain and Persistence Entities
	Data Integrity and Consistency

	Diagnostic applications – the client side
	Vehicle diagnostic mobile application
	Interpretation of vehicle data
	Guided Fault Finding
	Infrastructure support in V2X systems
	Vehicle Data Campaign

	Summary

	Tests, Results & Benchmarking/Discussion
	Benchmarking with existing solution
	Prototype quality attributes
	Functional suitability
	Reliability
	Performance efficiency
	Usability
	Security
	Compatibility
	Maintainability
	Portability

	Discussion of challenges
	Protection of the OEM's know-how
	No technology coupling
	Scalability
	Data model for vehicle projects
	Online and remote capabilities
	Backwards compatibility
	Future-proof architecture

	Application spectrum – User stories
	Vehicle remote capabilities
	Remote emission controls
	First level vehicle diagnostic
	Proactive maintenance
	Feature on Demand
	Do not use a relational data pattern
	Use a NoSQL datastore instead
	Think about data and system security

	Summary

	V Conclusion & Perspectives
	Conclusion and Outlook
	Overview
	Summary
	Security of OEM's and System Data
	Architecture Design Principles
	Communication Standards
	Software Quality Attributes

	Contributions
	Outlook

	Appendices
	Mathematical background
	Big O Notation
	 notation
	 notation

	Agile Service Development
	Agile methods
	Agility aspects
	Patterns for agility

	Bibliography

	Afterword

