41 research outputs found
Randomised, double-blind, multicentre, mixed-methods, dose-escalation feasibility trial of mirtazapine for better treatment of severe breathlessness in advanced lung disease (BETTER-B feasibility)
© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ. New treatments are required for severe breathlessness in advanced disease. We conducted a randomised feasibility trial of mirtazapine over 28 days in adults with a modified medical research council breathlessness scale score ≥3. Sixty-four patients were randomised (409 screened), achieving our primary feasibility endpoint of recruitment. Most patients had COPD or interstitial lung disease; 52 (81%) completed the trial. There were no differences between placebo and mirtazapine in tolerability or safety, and blinding was maintained. Worst breathlessness ratings at day 28 (primary clinical activity endpoint) were, 7.1 (SD 2.3, placebo) and 6.3 (SD 1.8, mirtazapine). A phase III trial of mirtazapine is indicated. Trial registration: ISRCTN 32236160; European Clinical Trials Database (EudraCT no: 2015-004064-11)
Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome.
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism
Mass spectrometry-directed structure elucidation and total synthesis of ultra-long chain (O-acyl)-ω-hydroxy fatty acids
The (O-acyl)-ω-hydroxy FAs (OAHFAs) comprise an unusual lipid subclass present in the skin, vernix caseosa, and meibomian gland secretions. Although they are structurally related to the general class of FA esters of hydroxy FAs (FAHFAs), the ultra-long chain (30-34 carbons) and the putative -substitution of the backbone hydroxy FA suggest that OAHFAs have unique biochemistry. Complete structural elucidation of OAHFAs has been challenging because of their low abundance within complex lipid matrices. Furthermore, because these compounds occur as a mixture of closely related isomers, insufficient spectroscopic data have been obtained to guide structure confirmation by total synthesis. Here, we describe the full molecular structure of ultra-long chain OAHFAs extracted from human meibum by exploiting the gas-phase purification of lipids through multistage MS and novel multidimensional ion activation methods. The analysis elucidated sites of unsaturation, the stereochemical configuration of carbon-carbon double bonds, and ester linkage regiochemistry. Such isomer-resolved MS guided the first total synthesis of an ultra-long chain OAHFA, which, in turn, confirmed the structure of the most abundant OAHFA found in human meibum, OAHFA 50:2. The availability of a synthetic OAHFA opens new territory for future investigations into the unique biophysical and biochemical properties of these lipids
PRISM protocol: A randomised phase II trial of nivolumab in combination with alternatively scheduled ipilimumab in first-line treatment of patients with advanced or metastatic renal cell carcinoma
Background
The combination of nivolumab, a programmed death-1 (PD-1) targeted monoclonal antibody, with the cytotoxic T-lymphocyte antigen-4 (CTLA-4) targeted antibody, ipilimumab, represents a new standard of care in the first-line setting for patients with intermediate- and poor-risk metastatic renal cell carcinoma (mRCC) based on recent phase III data. Combining ipilimumab with nivolumab increases rates of grade 3 and 4 toxicity compared with nivolumab alone, and the optimal scheduling of these agents when used together remains unknown. The aim of the PRISM study is to assess whether less frequent dosing of ipilimumab (12-weekly versus 3-weekly), in combination with nivolumab, is associated with a favourable toxicity profile without adversely impacting efficacy.
Methods
The PRISM trial is a UK-based, open label, multi-centre, phase II, randomised controlled trial. The trial population consists of patients with untreated locally advanced or metastatic clear cell RCC, and aims to recruit 189 participants. Participants will be randomised on a 2:1 basis in favour of a modified schedule of 4 doses of 12-weekly ipilimumab versus a standard schedule of 4 doses of 3-weekly ipilimumab, both in combination with standard nivolumab. The proportion of participants experiencing a grade 3 or 4 adverse reaction within 12 months forms the primary endpoint of the study, but with 12-month progression free survival a key secondary endpoint. The incidence of all adverse events, discontinuation rates, overall response rate, duration of response, overall survival rates and health related quality of life will also be analysed as secondary endpoints. In addition, the potential of circulating and tissue-based biomarkers as predictors of therapy response will be explored.
Discussion
The combination of nivolumab with ipilimumab is active in patients with mRCC. Modifying the frequency of ipilimumab dosing may mitigate toxicity rates and positively impact quality of life without compromising efficacy, a hypothesis being explored in other tumour types such as non-small cell lung cancer. The best way to give this combination to patients with mRCC must be similarly established
Radical cystectomy against intravesical BCG for high-risk high-grade nonmuscle invasive bladder cancer: results from the randomized controlled BRAVO-feasibility study
PURPOSE
High-grade nonmuscle invasive bladder cancer (HRNMIBC) is a heterogeneous disease. Treatments include intravesical maintenance Bacillus Calmette-Guerin (mBCG) and radical cystectomy (RC). We wanted to understand whether a randomized trial comparing these options was possible.
MATERIALS AND METHODS
We conducted a two-arm, prospective multicenter randomized study to determine the feasibility in Bacillus Calmette-Guerin-naive patients. Participants had new high-risk HRNMIBC suitable for both treatments. Random assignment was stratified by age, sex, center, stage, presence of carcinoma in situ, and prior low-risk bladder cancer. Qualitative work investigated how to maintain equipoise. The primary outcome was the number of patients screened, eligible, recruited, and randomly assigned.
RESULTS
We screened 407 patients, approached 185, and obtained consent from 51 (27.6%) patients. Of these, one did not proceed and therefore 50 were randomly assigned (1:1). In the mBCG arm, 23/25 (92.0%) patients received mBCG, four had nonmuscle invasive bladder cancer (NMIBC) after induction, three had NMIBC at 4 months, and four received RC. At closure, two patients had metastatic BC. In the RC arm, 20 (80.0%) participants received cystectomy, including five (25.0%) with no tumor, 13 (65.0%) with HRNMIBC, and two (10.0%) with muscle invasion in their specimen. At follow-up, all patients in the RC arm were free of disease. Adverse events were mostly mild and equally distributed (15/23 [65.2%] patients with mBCG and 13/20 [65.0%] patients with RC). The quality of life (QOL) of both arms was broadly similar at 12 months.
CONCLUSION
A randomized controlled trial comparing mBCG and RC will be challenging to recruit into. Around 10% of patients with high-risk HRNMIBC have a lethal disease and may be better treated by primary radical treatment. Conversely, many are suitable for bladder preservation and may maintain their prediagnosis QOL
Rotationally resolved infrared spectrum of the Li+_D2 cation complex
The infrared spectrum of mass selected Li +-D 2 cations is recorded in the D-D stretch region (2860-2950 cm -1) in a tandem mass spectrometer by monitoring Li + photofragments. The D-D stretch vibration of Li +-D 2 is shifted by -79 cm -1 from that of the free D 2 molecule indicating that the vibrational excitation of the D 2 subunit strengthens the effective Li +-D 2 intermolecular interaction. Around 100 rovibrational transitions, belonging to parallel K a=0-0, 1-1, and 2-2 subbands, are fitted to a Watson A-reduced Hamiltonian to yield effective molecular parameters. The infrared spectrum shows that the complex consists of a Li + ion attached to a slightly perturbed D 2 molecule with a T-shaped equilibrium configuration and a 2.035 A vibrationally averaged intermolecular separation. Comparisons are made between the spectroscopic data and data obtained from rovibrational calculations using a recent three dimensional Li +-D 2 potential energy surface [R. Martinazzo, G. Tantardini, E. Bodo, and F. Gianturco, J. Chem. Phys. 119, 11241 (2003)]
Infrared spectra of the Li +_(H 2)n(n=1-3) cation complexes
The Li+–(H2)n n = 1–3 complexes are investigated through infrared spectra recorded in the H–H stretch region (3980–4120 cm−1) and through ab initio calculations at the MP2∕aug-cc-pVQZ level. The rotationally resolved H–H stretch band of Li+–H2 is centered at 4053.4 cm−1 [a −108 cm−1 shift from the Q1(0) transition of H2]. The spectrum exhibits rotational substructure consistent with the complex possessing a T-shaped equilibrium geometry, with the Li+ ion attached to a slightly perturbed H2 molecule. Around 100 rovibrational transitions belonging to parallel Ka = 0‐0, 1-1, 2-2, and 3-3 subbands are observed. The Ka = 0‐0 and 1-1 transitions are fitted by a Watson A-reduced Hamiltonian yielding effective molecular parameters. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 2.056 Å increasing by 0.004 Å when the H2 subunit is vibrationally excited. The spectroscopic data are compared to results from rovibrational calculations using recent three dimensional Li+–H2 potential energy surfaces [ Martinazzo et al., J. Chem. Phys. 119, 11241 (2003); Kraemer and Špirko, Chem. Phys. 330, 190 (2006) ]. The H–H stretch band of Li+–(H2)2, which is centered at 4055.5 cm−1 also exhibits resolved rovibrational structure. The spectroscopic data along with ab initio calculations support a H2–Li+–H2 geometry, in which the two H2 molecules are disposed on opposite sides of the central Li+ ion. The two equivalent Li+⋯H2 bonds have approximately the same length as the intermolecular bond in Li+–H2. The Li+–(H2)3 cluster is predicted to possess a trigonal structure in which a central Li+ ion is surrounded by three equivalent H2 molecules. Its infrared spectrum features a broad unresolved band centered at 4060 cm−1