923 research outputs found

    Algebras de Banach de funções continuas

    Get PDF
    Orientador : Jorge Tulio Mujica AscuiDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação CientificaMestradoMestre em Matemátic

    Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells

    Get PDF
    ABSTRACT This study first investigates the anticancer effect of asiatic acid in two human breast cancer cell lines, MCF-7 and MDA-MB-231. Asiatic acid exhibited effective cell growth inhibition by inducing cancer cells to undergo S-G2/M phase arrest and apoptosis. Blockade of cell cycle was associated with increased p21/ WAF1 levels and reduced amounts of cyclinB1, cyclinA, Cdc2, and Cdc25C in a p53-independent manner. Asiatic acid also reduced Cdc2 function by increasing the association of p21/WAF1/Cdc2 complex and the level of inactivated phospho-Cdc2 and phospho-Cdc25C. Asiatic acid treatment triggered the mitochondrial apoptotic pathway indicated by changing Bax/Bcl-2 ratios, cytochrome c release, and caspase-9 activation, but it did not act on Fas/Fas ligand pathways and the activation of caspase-8. We also found that mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK1/2), and p38, but not c-Jun NH 2 -terminal kinase (JNK), are critical mediators in asiatic acid-induced cell growth inhibition. U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] or SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole], specific inhibitors of mitogen-activated protein kinase kinase and p38 kinase activities, significantly decreased or delayed apoptosis. Asiatic acid was likely to confine the breast cancer cells in the S-G2/M phase mainly through the p38 pathway, because both SB203580 and p38 small interfering RNA (siRNA) inhibition significantly attenuated the accumulation of inactive phospho-Cdc2 and phospho-Cdc25C proteins and the cell numbers of S-G2/M phase. Moreover, U0126 and ERK siRNA inhibition completely suppressed asiatic acid-induced Bcl-2 phosphorylation and Bax up-regulation, and caspase-9 activation. Together, these results imply a critical role for ERK1/2 and p38 but not JNK, p53, and Fas/Fas ligand in asiatic acid-induced S-G2/M arrest and apoptosis of human breast cancer cells

    Case report: VA-ECMO for fulminant myocarditis in an infant with acute COVID-19

    Get PDF
    Fulminant myocarditis in children was rare during the coronavirus disease 2019 pandemic, but it had the potential for high morbidity and mortality. We describe the clinical course of a previously healthy 9-month-old young male infant who rapidly deteriorated into cardiogenic shock due to coronavirus disease 2019-related fulminant myocarditis. He developed severe heart failure and multiple organ dysfunction syndrome that were treated promptly with central venoarterial extracorporeal membrane oxygenation and continuous venovenous hemofiltration. He made a good recovery without significant morbidity

    HBV replication is significantly reduced by IL-6

    Get PDF
    Interleukin-6 (IL-6) is a pleiotropic cytokine with pivotal functions in the regulation of the biological responses of several target cells including hepatocytes. The level of serum IL-6 has been reported to be elevated in patients with chronic hepatitis B, cirrhosis and hepatocellular carcinoma and represents the best marker of HBV-related clinical progression as compared with several other cytokines. In this study, we found that IL-6 was able to effectively suppress hepatitis B virus (HBV) replication and prevent the accumulation of HBV covalently closed circular DNA (cccDNA) in a human hepatoma cell line. We also demonstrated that the suppression of HBV replication by IL-6 requires concurrently a moderate reduction of viral transcripts/core proteins and a marked decrease in viral genome-containing nucleocapsids. Studies on the stability of existing viral capsids suggest that the IL-6 effect on the reduction of genome-containing nucleocapsids is mediated through the prevention of the formation of genome-containing nucleocapsids, which is similar to the effect of interferons. However, IFN-α/β and IFN-γ did not participate in the IL-6-induced suppression of HBV replication. Taken together, our results will provide important information to better understand the role of IL-6 in the course of HBV infection

    Subamolide A Induces Mitotic Catastrophe Accompanied by Apoptosis in Human Lung Cancer Cells

    Get PDF
    This study investigated the anticancer effects of subamolide A (Sub-A), isolated from Cinnamomum subavenium, on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS) production and decreased glutathione level. The elevated ROS triggered the activation of ataxia-telangiectasia mutation (ATM), which further enhanced the ATF3 upregulation and subsequently enhanced p53 function by phosphorylation at Serine 15 and Serine 392. The antioxidant, EUK8, significantly decreased mitotic catastrophe by inhibiting ATM activation, ATF3 expression, and p53 phosphorylation. The reduction of ATM and ATF3 expression by shRNA decreased Sub-A-mediated p53 phosphorylation and mitotic catastrophe. Sub-A also caused a dramatic 70% reduction in tumor size in an animal model. Taken together, cell death of lung cancer cells in response to Sub-A is dependent on ROS generation, which triggers mitotic catastrophe followed by apoptosis. Therefore, Sub-A may be a novel anticancer agent for the treatment of nonsmall cell lung cancer

    A cytoplasmic RNA virus generates functional viral small RNAs and regulates viral IRES activity in mammalian cells

    Get PDF
    The roles of virus-derived small RNAs (vsRNAs) have been studied in plants and insects. However, the generation and function of small RNAs from cytoplasmic RNA viruses in mammalian cells remain unexplored. This study describes four vsRNAs that were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (\u3e105 copy numbers per cell) of vsRNA1, one of the four vsRNAs. We also demonstrated that Dicer is involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and internal ribosomal entry site (IRES) activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. We also present evidence that vsRNA1 targets stem-loop II of the viral 5′ untranslated region and inhibits the activity of the IRES through this sequence-specific targeting. Our study demonstrates the ability of a cytoplasmic RNA virus to generate functional vsRNA in mammalian cells. In addition, we also demonstrate a potential novel mechanism for a positive-stranded RNA virus to regulate viral translation: generating a vsRNA that targets the IRES

    Thrombomodulin Regulates Keratinocyte Differentiation and Promotes Wound Healing

    Get PDF
    The membrane glycoprotein thrombomodulin (TM) has been implicated in keratinocyte differentiation and wound healing, but its specific function remains undetermined. The epidermis-specific TM knockout mice were generated to investigate the function of TM in these biological processes. Primary cultured keratinocytes obtained from TMlox/lox; K5-Cre mice, in which TM expression was abrogated, underwent abnormal differentiation in response to calcium induction. Poor epidermal differentiation, as evidenced by downregulation of the terminal differentiation markers loricrin and filaggrin, was observed in TMlox/lox; K5-Cre mice. Silencing TM expression in human epithelial cells impaired calcium-induced extracellular signal–regulated kinase pathway activation and subsequent keratinocyte differentiation. Compared with wild-type mice, the cell spreading area and wound closure rate were lower in keratinocytes from TMlox/lox; K5-Cre mice. In addition, the lower density of neovascularization and smaller area of hyperproliferative epithelium contributed to slower wound healing in TMlox/lox; K5-Cre mice than in wild-type mice. Local administration of recombinant TM (rTM) accelerated healing rates in the TM-null skin. These data suggest that TM has a critical role in skin differentiation and wound healing. Furthermore, rTM may hold therapeutic potential for the treatment of nonhealing chronic wounds
    corecore