15,029 research outputs found

    Subdural Hematoma in Graveā€™s Disease Induced Thrombocytopenia.

    Get PDF
    Subdural hematoma (SDH) usually occurs secondary to trauma, in bleeding disorders it may occur spontaneously. It is a rare complication of immune thrombocytopenia. Here we report a case of 45 years female presenting with presenting with complaints of headache, palpitation and menorrhagia and later diagnosed to be a case of Grave's disease with thrombocytopenia with sub dural hematoma. No such case reports are available in literature

    Calibrated Langevin dynamics simulations of intrinsically disordered proteins

    Full text link
    We perform extensive coarse-grained (CG) Langevin dynamics simulations of intrinsically disordered proteins (IDPs), which possess fluctuating conformational statistics between that for excluded volume random walks and collapsed globules. Our CG model includes repulsive steric, attractive hydrophobic, and electrostatic interactions between residues and is calibrated to a large collection of single-molecule fluorescence resonance energy transfer data on the inter-residue separations for 36 pairs of residues in five IDPs: Ī±\alpha-, Ī²\beta-, and Ī³\gamma-synuclein, the microtubule-associated protein Ļ„\tau, and prothymosin Ī±\alpha. We find that our CG model is able to recapitulate the average inter-residue separations regardless of the choice of the hydrophobicity scale, which shows that our calibrated model can robustly capture the conformational dynamics of IDPs. We then employ our model to study the scaling of the radius of gyration with chemical distance in 11 known IDPs. We identify a strong correlation between the distance to the dividing line between folded proteins and IDPs in the mean charge and hydrophobicity space and the scaling exponent of the radius of gyration with chemical distance along the protein.Comment: 16 pages, 10 figure

    Floating-disk parylene microvalve for self-regulating biomedical flow controls

    Get PDF
    A novel self-regulating parylene micro valve is presented in this paper with potential applications for biomedical flow controls. Featuring a free-floating bendable valve disk and two-level valve seat, this surface-micromachined polymeric valve accomplishes miniature pressure/flow rate regulation in a band-pass profile stand-alone without the need of power sources or active actuation. Experimental data of underwater testing results have successfully demonstrated that the microfabricated in-channel valve can regulate water flow at 0-80 mmHg and 0-10 ĀµL/min pressure/flow rate level, which is perfectly suitable for biomedical and lab-on-a-chip applications. For example, such biocompatible microvalve can be incorporated in ocular implants for control of eye fluid drainage to fulfill intraocular pressure (IOP) regulation in glaucoma patients
    • ā€¦
    corecore