5 research outputs found
Assessment of Chemical Mixtures and Groundwater Effects on <i>Daphnia magna</i> Transcriptomics
Small organisms can be used as biomonitoring tools to assess chemicals in the environment. Chemical stressors are especially hard to assess and monitor when present as complex mixtures. Here, fifteen polymerase chain reaction assays targeting <i>Daphnia magna</i> genes were calibrated to responses elicited in <i>D. magna</i> exposed for 24 h to five different doses each of the munitions constituents 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, trinitrobenzene, dinitrobenzene, or 1,3,5-trinitro-1,3,5-triazacyclohexane. A piecewise-linear model for log-fold expression changes in gene assays was used to predict response to munitions mixtures and contaminated groundwater under the assumption that chemical effects were additive. The correlations of model predictions with actual expression changes ranged from 0.12 to 0.78 with an average of 0.5. To better understand possible mixture effects, gene expression changes from all treatments were compared using high-density microarrays. Whereas mixtures and groundwater exposures had genes and gene functions in common with single chemical exposures, unique functions were also affected, which was consistent with the nonadditivity of chemical effects in these mixtures. These results suggest that, while gene behavior in response to chemical exposure can be partially predicted based on chemical exposure, estimation of the composition of mixtures from chemical responses is difficult without further understanding of gene behavior in mixtures. Future work will need to examine additive and nonadditive mixture effects using a much greater range of different chemical classes in order to clarify the behavior and predictability of complex mixtures
Building Quantitative Prediction Models for Tissue Residue of Two Explosives Compounds in Earthworms from Microarray Gene Expression Data
Soil contamination near munitions plants and testing grounds is a serious environmental concern that can result in the formation of tissue chemical residue in exposed animals. Quantitative prediction of tissue residue still represents a challenging task despite long-term interest and pursuit, as tissue residue formation is the result of many dynamic processes including uptake, transformation, and assimilation. The availability of high-dimensional microarray gene expression data presents a new opportunity for computational predictive modeling of tissue residue from changes in expression profile. Here we analyzed a 240-sample data set with measurements of transcriptomic-wide gene expression and tissue residue of two chemicals, 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), in the earthworm <i>Eisenia fetida</i>. We applied two different computational approaches, LASSO (Least Absolute Shrinkage and Selection Operator) and RF (Random Forest), to identify predictor genes and built predictive models. Each approach was tested alone and in combination with a prior variable selection procedure that involved the Wilcoxon rank-sum test and HOPACH (Hierarchical Ordered Partitioning And Collapsing Hybrid). Model evaluation results suggest that LASSO was the best performer of minimum complexity on the TNT data set, whereas the combined Wilcoxon-HOPACH-RF approach achieved the highest prediction accuracy on the RDX data set. Our models separately identified two small sets of ca. 30 predictor genes for RDX and TNT. We have demonstrated that both LASSO and RF are powerful tools for quantitative prediction of tissue residue. They also leave more unknown than explained, however, allowing room for improvement with other computational methods and extension to mixture contamination scenarios
Building Quantitative Prediction Models for Tissue Residue of Two Explosives Compounds in Earthworms from Microarray Gene Expression Data
Soil contamination near munitions plants and testing grounds is a serious environmental concern that can result in the formation of tissue chemical residue in exposed animals. Quantitative prediction of tissue residue still represents a challenging task despite long-term interest and pursuit, as tissue residue formation is the result of many dynamic processes including uptake, transformation, and assimilation. The availability of high-dimensional microarray gene expression data presents a new opportunity for computational predictive modeling of tissue residue from changes in expression profile. Here we analyzed a 240-sample data set with measurements of transcriptomic-wide gene expression and tissue residue of two chemicals, 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), in the earthworm <i>Eisenia fetida</i>. We applied two different computational approaches, LASSO (Least Absolute Shrinkage and Selection Operator) and RF (Random Forest), to identify predictor genes and built predictive models. Each approach was tested alone and in combination with a prior variable selection procedure that involved the Wilcoxon rank-sum test and HOPACH (Hierarchical Ordered Partitioning And Collapsing Hybrid). Model evaluation results suggest that LASSO was the best performer of minimum complexity on the TNT data set, whereas the combined Wilcoxon-HOPACH-RF approach achieved the highest prediction accuracy on the RDX data set. Our models separately identified two small sets of ca. 30 predictor genes for RDX and TNT. We have demonstrated that both LASSO and RF are powerful tools for quantitative prediction of tissue residue. They also leave more unknown than explained, however, allowing room for improvement with other computational methods and extension to mixture contamination scenarios
Building Quantitative Prediction Models for Tissue Residue of Two Explosives Compounds in Earthworms from Microarray Gene Expression Data
Soil contamination near munitions plants and testing grounds is a serious environmental concern that can result in the formation of tissue chemical residue in exposed animals. Quantitative prediction of tissue residue still represents a challenging task despite long-term interest and pursuit, as tissue residue formation is the result of many dynamic processes including uptake, transformation, and assimilation. The availability of high-dimensional microarray gene expression data presents a new opportunity for computational predictive modeling of tissue residue from changes in expression profile. Here we analyzed a 240-sample data set with measurements of transcriptomic-wide gene expression and tissue residue of two chemicals, 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), in the earthworm <i>Eisenia fetida</i>. We applied two different computational approaches, LASSO (Least Absolute Shrinkage and Selection Operator) and RF (Random Forest), to identify predictor genes and built predictive models. Each approach was tested alone and in combination with a prior variable selection procedure that involved the Wilcoxon rank-sum test and HOPACH (Hierarchical Ordered Partitioning And Collapsing Hybrid). Model evaluation results suggest that LASSO was the best performer of minimum complexity on the TNT data set, whereas the combined Wilcoxon-HOPACH-RF approach achieved the highest prediction accuracy on the RDX data set. Our models separately identified two small sets of ca. 30 predictor genes for RDX and TNT. We have demonstrated that both LASSO and RF are powerful tools for quantitative prediction of tissue residue. They also leave more unknown than explained, however, allowing room for improvement with other computational methods and extension to mixture contamination scenarios
Building Quantitative Prediction Models for Tissue Residue of Two Explosives Compounds in Earthworms from Microarray Gene Expression Data
Soil contamination near munitions plants and testing grounds is a serious environmental concern that can result in the formation of tissue chemical residue in exposed animals. Quantitative prediction of tissue residue still represents a challenging task despite long-term interest and pursuit, as tissue residue formation is the result of many dynamic processes including uptake, transformation, and assimilation. The availability of high-dimensional microarray gene expression data presents a new opportunity for computational predictive modeling of tissue residue from changes in expression profile. Here we analyzed a 240-sample data set with measurements of transcriptomic-wide gene expression and tissue residue of two chemicals, 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), in the earthworm <i>Eisenia fetida</i>. We applied two different computational approaches, LASSO (Least Absolute Shrinkage and Selection Operator) and RF (Random Forest), to identify predictor genes and built predictive models. Each approach was tested alone and in combination with a prior variable selection procedure that involved the Wilcoxon rank-sum test and HOPACH (Hierarchical Ordered Partitioning And Collapsing Hybrid). Model evaluation results suggest that LASSO was the best performer of minimum complexity on the TNT data set, whereas the combined Wilcoxon-HOPACH-RF approach achieved the highest prediction accuracy on the RDX data set. Our models separately identified two small sets of ca. 30 predictor genes for RDX and TNT. We have demonstrated that both LASSO and RF are powerful tools for quantitative prediction of tissue residue. They also leave more unknown than explained, however, allowing room for improvement with other computational methods and extension to mixture contamination scenarios