114 research outputs found

    Alternative splicing in prostate cancer.

    Full text link
    Androgen receptor (AR) splice variants (AR-Vs) have been implicated in the development and progression of metastatic prostate cancer. AR-Vs are truncated isoforms of the AR, a subset of which lack a ligand-binding domain and remain constitutively active in the absence of circulating androgens, thus promoting cancer cell proliferation. Consequently, AR-Vs have been proposed to contribute not only to resistance to anti-androgen therapies but also to resistance to radiotherapy in patients receiving combination therapy by promoting DNA repair. AR-Vs, such as AR-V7, have been associated with unfavourable clinical outcomes in patients; however, attempts to specifically inhibit or prevent the formation of AR-Vs have, to date, been unsuccessful. Thus, novel therapeutic strategies are desperately needed to address the oncogenic effects of AR-Vs, which can drive lethal forms of prostate cancer. Disruption of alternative splicing through modulation of the spliceosome is one such potential therapeutic avenue; however, our understanding of the biology of the spliceosome and how it contributes to prostate cancer remains incomplete, as reflected in the dearth of spliceosome-targeted therapeutic agents. In this Review, the authors outline the current understanding of the role of the spliceosome in the progression of prostate cancer and explore the therapeutic utility of manipulating alternative splicing to improve patient care

    Analytical Validation and Clinical Qualification of a New Immunohistochemical Assay for Androgen Receptor Splice Variant-7 Protein Expression in Metastatic Castration-resistant Prostate Cancer.

    Get PDF
    Background The androgen receptor splice variant-7 (AR-V7) has been implicated in the development of castration-resistant prostate cancer (CRPC) and resistance to abiraterone and enzalutamide.Objective To develop a validated assay for detection of AR-V7 protein in tumour tissue and determine its expression and clinical significance as patients progress from hormone-sensitive prostate cancer (HSPC) to CRPC.Design, setting, and participants Following monoclonal antibody generation and validation, we retrospectively identified patients who had HSPC and CRPC tissue available for AR-V7 immunohistochemical (IHC) analysis.Outcome measurements and statistical analysis Nuclear AR-V7 expression was determined using IHC H score (HS) data. The change in nuclear AR-V7 expression from HSPC to CRPC and the association between nuclear AR-V7 expression and overall survival (OS) was determined.Results and limitations Nuclear AR-V7 expression was significantly lower in HSPC (median HS 50, interquartile range [IQR] 17.5-90) compared to CRPC (HS 135, IQR 80-157.5; p<0.0001), and in biopsy tissue taken before (HS 80, IQR 30-136.3) compared to after (HS 140, IQR 105-167.5; p=0.007) abiraterone or enzalutamide treatment. Lower nuclear AR-V7 expression at CRPC biopsy was associated with longer OS (hazard ratio 1.012, 95% confidence interval 1.004-1.020; p=0.003). While this monoclonal antibody primarily binds to AR-V7 in PC biopsy tissue, it may also bind to other proteins.Conclusions We provide the first evidence that nuclear AR-V7 expression increases with emerging CRPC and is prognostic for OS, unlike antibody staining for the AR N-terminal domain. These data indicate that AR-V7 is important in CRPC disease biology; agents targeting AR splice variants are needed to test this hypothesis and further improve patient outcome from CRPC.Patient summary In this study we found that levels of the protein AR-V7 were higher in patients with advanced prostate cancer. A higher level of AR-V7 identifies a group of patients who respond less well to certain prostate cancer treatments and live for a shorter period of time

    Hormonal response to lipid and carbohydrate meals during the acute postprandial period

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optimizing the hormonal environment during the postprandial period in favor of increased anabolism is of interest to many active individuals. Data are conflicting regarding the acute hormonal response to high fat and high carbohydrate feedings. Moreover, to our knowledge, no studies have compared the acute hormonal response to ingestion of lipid and carbohydrate meals of different size.</p> <p>Methods</p> <p>We compared the hormonal response to lipid and carbohydrate meals of different caloric content during the acute postprandial period. Nine healthy men (22 Β± 2 years) consumed in a random order, cross-over design one of four meals/beverages during the morning hours in a rested and fasted state: dextrose at 75 g (300 kcals), dextrose at 150 g (600 kcals), lipid at 33 g (300 kcals), lipid at 66 g (600 kcals). Blood samples were collected Pre meal, and at 0.5 hr, 1 hr, 2 hr, and 3 hr post meal. Samples were assayed for testosterone, cortisol, and insulin using ELISA techniques. Area under the curve (AUC) was calculated for each variable, and a 4 Γ— 5 ANOVA was used to further analyze data.</p> <p>Results</p> <p>A meal Γ— time effect (p = 0.0003) was noted for insulin, with values highest for the dextrose meals at the 0.5 hr and 1 hr times, and relatively unaffected by the lipid meals. No interaction (p = 0.98) or meal (p = 0.39) effect was noted for testosterone, nor was an interaction (p = 0.99) or meal (p = 0.65) effect noted for cortisol. However, a time effect was noted for both testosterone (p = 0.04) and cortisol (p < 0.0001), with values decreasing during the postprandial period. An AUC effect was noted for insulin (p = 0.001), with values higher for the dextrose meals compared to the lipid meals (p < 0.05). No AUC effect was noted for testosterone (p = 0.85) or cortisol (p = 0.84).</p> <p>Conclusions</p> <p>These data indicate that 1) little difference is noted in serum testosterone or cortisol during the acute postprandial period when healthy men consume lipid and dextrose meals of different size; 2) Both testosterone and cortisol experience a drop during the acute postprandial period, which is similar to what is expected based on the normal diurnal variation--feeding with lipid or dextrose meals does not appear to alter this pattern; 3) dextrose meals of either 75 g or 150 g result in a significant increase in serum insulin, in particular at 0.5 hr and 1 hr post-ingestion; 4) lipid meals have little impact on serum insulin.</p

    Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer.

    Get PDF
    Background Liquid biopsies have demonstrated that the constitutively active androgen receptor splice variant-7 (AR-V7) associates with reduced response and overall survival from endocrine therapies in castration-resistant prostate cancer (CRPC). However, these studies provide little information pertaining to AR-V7 expression in prostate cancer (PC) tissue.Methods Following generation and validation of a potentially novel AR-V7 antibody for IHC, AR-V7 protein expression was determined for 358 primary prostate samples and 293 metastatic biopsies. Associations with disease progression, full-length androgen receptor (AR-FL) expression, response to therapy, and gene expression were determined.Results We demonstrated that AR-V7 protein is rarely expressed (<1%) in primary PC but is frequently detected (75% of cases) following androgen deprivation therapy, with further significant (P = 0.020) increase in expression following abiraterone acetate or enzalutamide therapy. In CRPC, AR-V7 expression is predominantly (94% of cases) nuclear and correlates with AR-FL expression (P ≀ 0.001) and AR copy number (P = 0.026). However, dissociation of expression was observed, suggesting that mRNA splicing remains crucial for AR-V7 generation. AR-V7 expression was heterogeneous between different metastases from a patient, although AR-V7 expression was similar within a metastasis. Moreover, AR-V7 expression correlated with a unique 59-gene signature in CRPC, including HOXB13, a critical coregulator of AR-V7 function. Finally, AR-V7-negative disease associated with better prostate-specific antigen (PSA) responses (100% vs. 54%, P = 0.03) and overall survival (74.3 vs. 25.2 months, hazard ratio 0.23 [0.07-0.79], P = 0.02) from endocrine therapies (pre-chemotherapy).Conclusion This study provides impetus to develop therapies that abrogate AR-V7 signaling to improve our understanding of AR-V7 biology and to confirm the clinical significance of AR-V7.Funding Work at the University of Washington and in the Plymate and Nelson laboratories is supported by the Department of Defense Prostate Cancer Research Program (W81XWH-14-2-0183, W81XWH-12-PCRP-TIA, W81XWH-15-1-0430, and W81XWH-13-2-0070), the Pacific Northwest Prostate Cancer SPORE (P50CA97186), the Institute for Prostate Cancer Research, the Veterans Affairs Research Program, the NIH/National Cancer Institute (P01CA163227), and the Prostate Cancer Foundation. Work in the de Bono laboratory was supported by funding from the Movember Foundation/Prostate Cancer UK (CEO13-2-002), the US Department of Defense (W81XWH-13-2-0093), the Prostate Cancer Foundation (20131017 and 20131017-1), Stand Up To Cancer (SU2C-AACR-DT0712), Cancer Research UK (CRM108X-A25144), and the UK Department of Health through an Experimental Cancer Medicine Centre grant (ECMC-CRM064X)

    Second-Generation HSP90 Inhibitor Onalespib Blocks mRNA Splicing of Androgen Receptor Variant 7 in Prostate Cancer Cells.

    Get PDF
    Resistance to available hormone therapies in prostate cancer has been associated with alternative splicing of androgen receptor (AR) and specifically, the expression of truncated and constitutively active AR variant 7 (AR-V7). The transcriptional activity of steroid receptors, including AR, is dependent on interactions with the HSP90 chaperone machinery, but it is unclear whether HSP90 modulates the activity or expression of AR variants. Here, we investigated the effects of HSP90 inhibition on AR-V7 in prostate cancer cell lines endogenously expressing this variant. We demonstrate that AR-V7 and full-length AR (AR-FL) were depleted upon inhibition of HSP90. However, the mechanisms underlying AR-V7 depletion differed from those for AR-FL. Whereas HSP90 inhibition destabilized AR-FL and induced its proteasomal degradation, AR-V7 protein exhibited higher stability than AR-FL and did not require HSP90 chaperone activity. Instead, HSP90 inhibition resulted in the reduction of AR-V7 mRNA levels but did not affect total AR transcript levels, indicating that HSP90 inhibition disrupted AR-V7 splicing. Bioinformatic analyses of transcriptome-wide RNA sequencing data confirmed that the second-generation HSP90 inhibitor onalespib altered the splicing of at least 557 genes in prostate cancer cells, including AR. These findings indicate that the effects of HSP90 inhibition on mRNA splicing may prove beneficial in prostate cancers expressing AR-V7, supporting further clinical investigation of HSP90 inhibitors in malignancies no longer responsive to androgen deprivation. Cancer Res; 76(9); 2731-42. Β©2016 AACR

    Insulin-like growth factors and insulin control a multifunctional signalling network of significant importance in cancer

    Get PDF
    Insulin-like growth factor (IGF) and insulin (INS) proteins regulate key cellular functions through a complex interacting multi-component molecular network, known as the IGF/INS axis. We describe how dynamic and multilayer interactions give rise to the multifunctional role of the IGF/INS axis. Furthermore, we summarise the importance of the regulatory IGF/INS network in cancer, and discuss the possibilities and limitations of therapies targeting the IGF/INS axis with reference to ongoing clinical trials concerning the blockage of IGF1R in several types of cancer

    The association of breast mitogens with mammographic densities

    Get PDF
    Radiologically dense breast tissue (mammographic density) is strongly associated with risk of breast cancer, but the biological basis for this association is unknown. In this study we have examined the association of circulating levels of hormones and growth factors with mammographic density. A total of 382 subjects, 193 premenopausal and 189 postmenopausal, without previous breast cancer or current hormone use, were selected in each of five categories of breast density from mammography units. Risk factor information, anthropometric measures, and blood samples were obtained, and oestradiol, progesterone, sex hormone binding globulin, growth hormone, insulin-like growth factor-I and its principal binding protein, and prolactin measured. Mammograms were digitised and measured using a computer-assisted method. After adjustment for other risk factors, we found in premenopausal women that serum insulin-like growth factor-I levels, and in postmenopausal women, serum levels of prolactin, were both significantly and positively associated with per cent density. Total oestradiol and progesterone levels were unrelated to per cent density in both groups. In postmenopausal women, free oestradiol (negatively), and sex hormone binding globulin (positively), were significantly related to per cent density. These data show an association between blood levels of breast mitogens and mammographic density, and suggest a biological basis for the associated risk of breast cancer

    IGFBP-rP1, a potential molecule associated with colon cancer differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our previous studies, we have demonstrated that insulin-like growth factor binding protein-related protein1 (IGFBP-rP1) played its potential tumor suppressor role in colon cancer cells through apoptosis and senescence induction. In this study, we will further uncover the role of IGFBP-rP1 in colon cancer differentiation and a possible mechanism by revealing responsible genes.</p> <p>Results</p> <p>In normal colon epithelium, immunohistochemistry staining detected a gradient IGFBP-rP1 expression along the axis of the crypt. IGFBP-rP1 strongly expressed in the differentiated cells at the surface of the colon epithelium, while weakly expressed at the crypt base. In colon cancer tissues, the expression of IGFBP-rP1 correlated positively with the differentiation status. IGFBP-rP1 strongly expressed in low grade colorectal carcinoma and weakly expressed in high grade colorectal carcinoma. In vitro, transfection of PcDNA3.1(IGFBP-rP1) into RKO, SW620 and CW2 cells induced a more pronounced anterior-posterior polarity morphology, accompanied by upregulation with alkaline phosphatase (AKP) activity. Upregulation of carcino-embryonic antigen (CEA) was also observed in SW620 and CW2 transfectants. The addition of IGFBP-rP1 protein into the medium could mimic most but not all effects of IGFBP-rP1 cDNA transfection. Seventy-eight reproducibly differentially expressed genes were detected in PcDNA3.1(IGFBP-rP1)-RKO transfectants, using Affymetrix 133 plus 2.0 expression chip platform. Directed Acyclic Graph (DAG) of the enriched GO categories demonstrated that differential expression of the enzyme regulator activity genes together with cytoskeleton and actin binding genes were significant. IGFBP-rP1 could upreguate Transgelin (TAGLN), downregulate SRY (sex determining region Y)-box 9(campomelic dysplasia, autosomal sex-reversal) (SOX9), insulin receptor substrate 1(IRS1), cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) (CDKN2B), amphiregulin(schwannoma-derived growth factor) (AREG) and immediate early response 5-like(IER5L) in RKO, SW620 and CW2 colon cancer cells, verified by Real time Reverse Transcription Polymerase Chain Reaction (rtRT-PCR). During sodium butyrate-induced Caco2 cell differentiation, IGFBP-rP1 was upregulated and the expression showed significant correlation with the AKP activity. The downregulation of IRS1 and SOX9 were also induced by sodium butyrate.</p> <p>Conclusion</p> <p>IGFBP-rP1 was a potential key molecule associated with colon cancer differentiation. Downregulation of IRS1 and SOX9 may the possible key downstream genes involved in the process.</p

    The Effects of Aging on the Molecular and Cellular Composition of the Prostate Microenvironment

    Get PDF
    Advancing age is associated with substantial increases in the incidence rates of common diseases affecting the prostate gland including benign prostatic hyperplasia (BPH) and prostate carcinoma. The prostate is comprised of a functional secretory epithelium, a basal epithelium, and a supporting stroma comprised of structural elements, and a spectrum of cell types that includes smooth muscle cells, fibroblasts, and inflammatory cells. As reciprocal interactions between epithelium and stromal constituents are essential for normal organogenesis and serve to maintain normal functions, discordance within the stroma could permit or promote disease processes. In this study we sought to identify aging-associated alterations in the mouse prostate microenvironment that could influence pathology.We quantitated transcript levels in microdissected glandular-adjacent stroma from young (age 4 months) and old (age 20-24 months) C57BL/6 mice, and identified a significant change in the expression of 1259 genes (p<0.05). These included increases in transcripts encoding proteins associated with inflammation (e.g., Ccl8, Ccl12), genotoxic/oxidative stress (e.g., Apod, Serpinb5) and other paracrine-acting effects (e.g., Cyr61). The expression of several collagen genes (e.g., Col1a1 and Col3a1) exhibited age-associated declines. By histology, immunofluorescence, and electron microscopy we determined that the collagen matrix is abundant and disorganized, smooth muscle cell orientation is disordered, and inflammatory infiltrates are significantly increased, and are comprised of macrophages, T cells and, to a lesser extent, B cells.These findings demonstrate that during normal aging the prostate stroma exhibits phenotypic and molecular characteristics plausibly contributing to the striking age associated pathologies affecting the prostate
    • …
    corecore