13 research outputs found

    Torque teno virus: an improved indicator for viral pathogens in drinking waters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently applied indicator organism systems, such as coliforms, are not fully protective of public health from enteric viruses in water sources. Waterborne disease outbreaks have occurred in systems that tested negative for coliforms, and positive coliform results do not necessarily correlate with viral risk. It is widely recognized that bacterial indicators do not co-occur exclusively with infectious viruses, nor do they respond in the same manner to environmental or engineered stressors. Thus, a more appropriate indicator of health risks from infectious enteric viruses is needed.</p> <p>Presentation of the hypothesis</p> <p>Torque teno virus is a small, non-enveloped DNA virus that likely exhibits similar transport characteristics to pathogenic enteric viruses. Torque teno virus is unique among enteric viral pathogens in that it appears to be ubiquitous in humans, elicits seemingly innocuous infections, and does not exhibit seasonal fluctuations or epidemic spikes. Torque teno virus is transmitted primarily via the fecal-oral route and can be assayed using rapid molecular techniques. We hypothesize that Torque teno virus is a more appropriate indicator of viral pathogens in drinking waters than currently used indicator systems based solely on bacteria.</p> <p>Testing the hypothesis</p> <p>To test the hypothesis, a multi-phased research approach is needed. First, a reliable Torque teno virus assay must be developed. A rapid, sensitive, and specific PCR method using established nested primer sets would be most appropriate for routine monitoring of waters. Because PCR detects both infectious and inactivated virus, an <it>in vitro </it>method to assess infectivity also is needed. The density and occurrence of Torque teno virus in feces, wastewater, and source waters must be established to define spatial and temporal stability of this potential indicator. Finally, Torque teno virus behavior through drinking water treatment plants must be determined with co-assessment of traditional indicators and enteric viral pathogens to assess whether correlations exist.</p> <p>Implications of the hypothesis</p> <p>If substantiated, Torque teno virus could provide a completely new, reliable, and efficient indicator system for viral pathogen risk. This indicator would have broad application to drinking water utilities, watershed managers, and protection agencies and would provide a better means to assess viral risk and protect public health.</p

    Effective Control of Schistosoma haematobium Infection in a Ghanaian Community following Installation of a Water Recreation Area

    Get PDF
    BackgroundUrogenital schistosomiasis caused by Schistosoma haematobium was endemic in Adasawase, Ghana in 2007. Transmission was reported to be primarily through recreational water contact.MethodsWe designed a water recreation area (WRA) to prevent transmission to school-aged children. The WRA features a concrete pool supplied by a borehole well and a gravity-driven rainwater collection system; it is 30 m2 and is split into shallow and deep sections to accommodate a variety of age groups. The WRA opened in 2009 and children were encouraged to use it for recreation as opposed to the local river. We screened children annually for S. haematobium eggs in their urine in 2008, 2009, and 2010 and established differences in infection rates before (2008–09) and after (2009–10) installation of the WRA. After each annual screening, children were treated with praziquantel and rescreened to confirm parasite clearance.Principal FindingsInitial baseline testing in 2008 established that 105 of 247 (42.5%) children were egg-positive. In 2009, with drug treatment alone, the pre-WRA annual cumulative incidence of infection was 29 of 216 (13.4%). In 2010, this incidence rate fell significantly (p<0.001, chi-squared) to 9 of 245 (3.7%) children after installation of the WRA. Logistic regression analysis was used to determine correlates of infection among the variables age, sex, distance between home and river, minutes observed at the river, low height-for-age, low weight-for-age, low Body Mass Index (BMI)-for-age, and previous infection status.Conclusion/SignificanceThe installation and use of a WRA is a feasible and highly effective means to reduce the incidence of schistosomiasis in school-aged children in a rural Ghanaian community. In conjunction with drug treatment and education, such an intervention can represent a significant step towards the control of schistosomiasis. The WRA should be tested in other water-rich endemic areas to determine whether infection prevalence can be substantially reduced.Author SummaryUrogenital schistosomiasis is a disease caused by the parasite Schistosoma haematobium; it is often characterized by bloody urine and tends to disproportionately affect school-aged children in rural tropical regions. The parasite is transmitted via skin contact with surface water that is contaminated by human waste. The disease was endemic in Adasawase, a rural Ghanaian community, in 2007. Transmission occurred mainly through recreational water contact. We collaborated with community members to design a water recreation area (WRA) featuring a concrete pool supplied by a borehole well and a rainwater collection system. We opened the pool in 2009 and local officials encouraged children to use the WRA for recreation. We screened local children annually (2008, 2009, 2010) for S. haematobium infection. After each screening, children were treated with praziquantel and rescreened. Baseline testing in 2008 established that at least 105 of 247 (42.5%) children were infected. In 2009, 29 of 216 (13.4%) children were infected, reflecting annual cumulative incidence. In 2010, a significantly smaller percentage of children (9 of 245, 3.7%) were infected. We conclude that the WRA effectively reduced infection in Adasawase, and that it should be tested in other water-rich endemic areas
    corecore