34 research outputs found

    Ultrahigh energy neutrino interactions and weak-scale string theories

    Get PDF
    It has been suggested that ultrahigh energy neutrinos can acquire cross-sections approaching hadronic size if the string scale is as low as 1-10 TeV. In this case, the vertical air showers observed with energies above the Greisen-Zatsepin-Kuzmin cutoff at E approximately 6x10^{19} eV could be initiated by neutrinos which are the only known primaries able to travel long distances unimpeded. We have calculated the neutrino-nucleon cross-section due to the exchange of Kaluza-Klein excitations of the graviton in a field theoretical framework. We have found that the neutrino-nucleon cross section and the transferred energy per interaction are too small to explain vertical showers even in the most optimistic scenario.Comment: 7 pages, 3 figures; discussion of the sensitivity of Auger/Owl shortened, matches version to be publishe

    Cosmic Microwave Background, Matter-Antimatter Asymmetry and Neutrino Masses

    Full text link
    We study the implications of thermal leptogenesis for neutrino parameters. Assuming that decays of N_1, the lightest of the heavy Majorana neutrinos, initiate baryogenesis, we show that the final baryon asymmetry is determined by only four parameters: the CP asymmetry epsilon_1, the heavy neutrino mass M_1, the effective light neutrino mass \tilde{m}_1, and the quadratic mean \bar{m} of the light neutrino masses. Imposing the CMB measurement of the baryon asymmetry as constraint on the neutrino parameters, we show, in a model independent way, that quasi-degenerate neutrinos are incompatible with thermal leptogenesis. For maximal CP asymmetry epsilon_1, and neutrino masses in the range from (\Delta m^2_{sol})^{1/2} to (\Delta m^2_{atm})^{1/2}, the baryogenesis temperature is T_B = O(10^{10}) GeV.Comment: 28 pages, 14 figures included; v2: erratum added, M_1 lower bound in the strong wash-out regime (see Eq. (63)) relaxed by a factor 2/

    The Neutrino Mass Window for Baryogenesis

    Get PDF
    Interactions of heavy Majorana neutrinos in the thermal phase of the early universe may be the origin of the cosmological matter-antimatter asymmetry. This mechanism of baryogenesis implies stringent constraints on light and heavy Majorana neutrino masses. We derive an improved upper bound on the CP asymmetry in heavy neutrino decays which, together with the kinetic equations, yields an upper bound on all light neutrino masses of 0.1 eV. Lepton number changing processes at temperatures above the temperature T_B of baryogenesis can erase other, pre-existing contributions to the baryon asymmetry. We find that these washout processes become very efficient if the effective neutrino mass \tilde{m}_1 is larger than m_* \simeq 10^{-3} eV. All memory of the initial conditions is then erased. Hence, for neutrino masses in the range from (\Delta m^2_sol)^{1/2} \simeq 8*10^{-3} eV to (\Delta m^2_atm)^{1/2} \simeq 5*10^{-2} eV, which is suggested by neutrino oscillations, leptogenesis emerges as the unique source of the cosmological matter-antimatter asymmetry.Comment: 29 pages, 12 figures include

    Baryon Asymmetry and Neutrino Mixing

    Get PDF
    In theories where B−LB-L is a spontaneously broken local symmetry, the cosmological baryon asymmetry can be generated by the out-of-equilibrium decay of heavy Majorana neutrinos. We study this mechanism assuming a similar pattern of mixings and masses for leptons and quarks, as suggested by SO(10) unification. This implies that B−LB-L is broken at the unification scale \Lambda_{\mbox{\scriptsize GUT}}\sim 10^{16} GeV, if m_{\n_\m} \sim 3\cdot 10^{-3}eV as preferred by the MSW explanation of the solar neutrino deficit. The observed value of the baryon asymmetry, nB/s∌10−10n_B/s \sim 10^{-10}, is then obtained without any fine tuning of parameters.Comment: latex2e, 10 pages, 3 figures, uses epsfi

    Leptogenesis in a Hybrid Texture Neutrino Mass Model

    Full text link
    We investigate the CP asymmetry for a hybrid texture of the neutrino mass matrix predicted by Q8Q_8 family symmetry in the context of the type-I seesaw mechanism and examine its consequences for leptogenesis. We, also, calculate the resulting Baryon Asymmetry of the Universe (BAU) for this texture.Comment: Accepted for publication in Mod. Phys. Lett.

    Leptogenesis in models with multi-Higgs bosons

    Get PDF
    We study the leptogenesis scenario in models with multi-Higgs doublets. It is pointed out that the washing-out process through the effective dimension five interactions, which has not been taken into account seriously in the conventional scenario, can be effective, and the resultant baryon asymmetry can be exponentially suppressed. This fact implies new possible scenario where the observed baryon asymmetry is the remnant of the washed out lepton asymmetry which was originally much larger than the one in the conventional scenario. Our new scenario is applicable to some neutrino mass matrix models which predict too large CP-violating parameter and makes them viable through the washing-out process.Comment: Latex 2e, 11 pages, 2 figures. Many parts in the original manuscript have been revised, but conclusions are unchange

    Leptogenesis, neutrino masses and gauge unification

    Full text link
    Leptogenesis is considered in its natural context where Majorana neutrinos fit in a gauge unification scheme and therefore couple to some extra gauge bosons. The masses of some of these gauge bosons are expected to be similar to those of the heavy Majorana particles, and this can have important consequences for leptogenesis. In fact, the effect can go both ways. Stricter bounds are obtained on one hand due to the dilution of the CP-violating effect by new decay and scattering channels, while, in a re-heating scheme, the presence of gauge couplings facilitates the re-population of the Majorana states. The latter effect allows in particular for smaller Dirac couplings.Comment: 11pages, 7 figures. v2: definition of the lepton asymmetry corrected, small numerical changes for the baryon number, conclusion does not change; typos corrected and references adde

    Leptogenesis and Low-energy Observables

    Get PDF
    We relate leptogenesis in a class of theories to low-energy experimental observables: quark and lepton masses and mixings. With reasonable assumptions motivated by grand unification, one can show that the CP-asymmetry parameter takes a universal form. Furthermore the dilution mass is related to the light neutrino masses. Overall, these models offer a natural explanation for a lepton asymmetry in the early universe.Comment: 10 pages, revised discussion on light neutrino masse

    Neutrino Oscillations v.s. Leptogenesis in SO(10) Models

    Full text link
    We study the link between neutrino oscillations and leptogenesis in the minimal framework assuming an SO(10) see-saw mechanism with 3 families. Dirac neutrino masses being fixed, the solar and atmospheric data then generically induce a large mass-hierarchy and a small mixing between the lightest right-handed neutrinos, which fails to produce sufficient lepton asymmetry by 5 orders of magnitudes at least. This failure can be attenuated for a very specific value of the mixing sin^2(2\theta_{e3})=0.1, which interestingly lies at the boundary of the CHOOZ exclusion region, but will be accessible to future long baseline experiments.Comment: 23 pages, 8 eps figures, JHEP3 format; more accurate effect of dilution reduces previous results, inclusion of all phases, added reference
    corecore