We study the implications of thermal leptogenesis for neutrino parameters.
Assuming that decays of N_1, the lightest of the heavy Majorana neutrinos,
initiate baryogenesis, we show that the final baryon asymmetry is determined by
only four parameters: the CP asymmetry epsilon_1, the heavy neutrino mass M_1,
the effective light neutrino mass \tilde{m}_1, and the quadratic mean \bar{m}
of the light neutrino masses. Imposing the CMB measurement of the baryon
asymmetry as constraint on the neutrino parameters, we show, in a model
independent way, that quasi-degenerate neutrinos are incompatible with thermal
leptogenesis. For maximal CP asymmetry epsilon_1, and neutrino masses in the
range from (\Delta m^2_{sol})^{1/2} to (\Delta m^2_{atm})^{1/2}, the
baryogenesis temperature is T_B = O(10^{10}) GeV.Comment: 28 pages, 14 figures included; v2: erratum added, M_1 lower bound in
the strong wash-out regime (see Eq. (63)) relaxed by a factor 2/