172 research outputs found

    Gender Differences in Isokinetic Strength after 60 and 90 d Bed Rest

    Get PDF
    Recent reports suggest that changes in muscle strength following disuse may differ between males and females. PURPOSE: To examine potential gender differences in strength changes following 60 and 90 d of experimental bed rest. METHODS: Isokinetic extensor and flexor strength of the knee (60deg and 180deg/s, concentric only), ankle (30deg/s, concentric and eccentric), and trunk (60deg/s, concentric only) were measured following 60 d (males: n=4, 34.5+/-9.6 y; females: n=4, 35.5+/-8.2 y) and 90 d (males: n=10, 31.4+/-4.8 y; females: n=5, 37.6+/-9.9 y) of 6-degree head-down-tilt bed rest (BR; N=23). Subjects were fed a controlled diet (55%/15%/ 30%, CHO/PRO/FAT) that maintained body weight within 3% of the weight recorded on Day 3 of bed rest. After a familiarization session, testing was conducted 6 d before BR and 2 d after BR completion. Peak torque and total work were calculated for the tests performed. To allow us to combine data from both 60- and 90-d subjects, we used a mixed-model statistical analysis in which time and gender were fixed effects and bed rest duration was a random effect. Log-transformations of strength measures were utilized when necessary in order to meet statistical assumptions. RESULTS: Main effects were seen for both time and gender (p<0.05), showing decreased strength in response to bed rest for both males and females, and males stronger than females for most strength measures. Only one interaction effect was observed: females exhibited a greater loss of trunk extensor peak torque at 60 d versus pre-BR, relative to males (p=0.004). CONCLUSION: Sixty and 90 d of BR induced significant losses in isokinetic muscle strength of the locomotor and postural muscles of the knee, ankle, and trunk. Although males were stronger than females for most of the strength measures that we examined, only changes in trunk extensor peak torque were greater for females than males at day 60 of bed res

    Biomechanics of the Treadmill Locomotion on the International Space Station

    Get PDF
    Exercise prescriptions completed by International Space Station (ISS) crewmembers are typically based upon evidence obtained during ground-based investigations, with the assumption that the results of long-term training in weightlessness will be similar to that attained in normal gravity. Coupled with this supposition are the assumptions that exercise motions and external loading are also similar between gravitational environments. Normal control of locomotion is dependent upon learning patterns of muscular activation and requires continual monitoring of internal and external sensory input [1]. Internal sensory input includes signals that may be dependent on or independent of gravity. Bernstein hypothesized that movement strategy planning and execution must include the consideration of segmental weights and inertia [2]. Studies of arm movements in microgravity showed that individuals tend to make errors but that compensation strategies result in adaptations, suggesting that control mechanisms must include peripheral information [3-5]. To date, however, there have been no studies examining a gross motor activity such as running in weightlessness other than using microgravity analogs [6-8]. The objective of this evaluation was to collect biomechanical data from crewmembers during treadmill exercise before and during flight. The goal was to determine locomotive biomechanics similarities and differences between normal and weightless environments. The data will be used to optimize future exercise prescriptions. This project addresses the Critical Path Roadmap risks 1 (Accelerated Bone Loss and Fracture Risk) and 11 (Reduced Muscle Mass, Strength, and Endurance). Data were collected from 7 crewmembers before flight and during their ISS missions. Before launch, crewmembers performed a single data collection session at the NASA Johnson Space Center. Three-dimensional motion capture data were collected for 30 s at speeds ranging from 1.5 to 9.5 mph in 0.5 mph increments with a 12-camera system. During flight, each crewmember completed up to 6 data collection sessions spread across their missions, performing their normal exercise prescription for the test day, resulting in varying data collection protocols between sessions. Motion data were collected by a single HD video camera positioned to view the crewmembers' left side, and tape markers were placed on their feet, legs, and neck on specific landmarks. Before data collection, the crewmembers calibrated the video camera. Video data were collected during the entire exercise session at 30 Hz. Kinematic data were used to determine left leg hip, knee, and ankle range of motion and contact time, flight time, and stride time for each stride. 129 trials in weightlessness were analyzed. Mean time-normalized strides were found for each trial, and cross-correlation procedures were used to examine the strength and direction of relationships between segment movement pattern timing in each gravitational condition. Cross-correlation analyses between gravitational conditions revealed highly consistent movement patterns at each joint. Peak correlation coefficients occurred at 0% phase, indicating there were no lags in movement timing. Joint ranges of motion were similar between gravitational conditions, with some slight differences between subjects. Motion patterns in weightlessness were highly consistent at a given speed with those occurring in 1G, indicating that despite differing sensory input, subjects maintain running kinematics. The data suggest that individuals are capable of compensating for loss of limb weight when creating movement strategies. These results have important implications for creating training programs for use in weightlessness as practitioners can have greater confidence in running motions transferring across gravitational environments. Furthermore, these results have implications for use by researchers investigating motor control mechanisms and investigating hypotheses related to movement strategies when using sensory input that is dependent upon gravity

    Reliability of Upright and Supine Power Measurements Using an Inertial Load Cycle Ergometer

    Get PDF
    Practical, reliable, and time efficient methods of measuring muscular power are desirable for both research and applied testing situations. The inertial-load cycling method (ILC; Power/Cycle, Austin, TX) requires subjects to pedal as fast as possible against the inertial load of a flywheel for only 3-5 seconds, which could help reduce the time and effort required for maximal power testing. PURPOSE: 1) To test the intramachine reliability of ILC over 3 separate sessions, 2) to compare postural stance (upright vs. supine) during testing, and 3) to compare the maximal power (Pmax) output measured using ILC to that obtained from traditional isokinetic and leg press testing. METHODS: Subjects (n = 12) were tested on 4 non-consecutive days. The following tests were done on the first day of testing: isometric knee extension, isokinetic knee extension at several speeds, isokinetic power/endurance at 180/sec (Biodex System 4), leg press maximal isometric force, and leg press power/endurance. The other 3 days consisted exclusively of ILC testing. Subjects performed 6 ILC tests in an upright position and 6 ILC tests in a supine position on each day. The starting position was counterbalanced. Mixed-effects linear modeling was used to determine if any differences existed between testing days and between upright and supine for Pmax and revolutions per minute at Pmax (RPMpk). Mixed-modeling was also used to calculate intraclass correlation coefficients (ICC) to determine the reliability of the ILC on each testing day for Pmax and RPMpk (ICCs were calculated separately for upright and supine). gKendall fs Tau a h was used to determine the association between ILC Pmax and isokinetic and leg press data. RESULTS: For Pmax, significant differences were found between days 1 and 2 (upright: p = 0.018; supine: p = 0.014) and between days 1 and 3 (upright: p = 0.001; supine: p = 0.002), but not between days 2 and 3 (upright: p = 0.422; supine: p = 0.501). Pmax ICC values were greater than or equal to 0.97 for all days in both positions. Also, no significant differences between upright and supine postures were found for Pmax. No significant differences between days were found for RPMpk; however, there was a significant posture effect (upright greater than supine). Moderate correlations were observed between ILC Pmax and isokinetic and leg press tests (upright: 0.64-0.79, supine: 0.52-0.82). CONCLUSIONS: Overall, ILC is a very reliable test. Since a significant difference was found between day 1 and the other ILC testing days, it is suggested that day 1 of ILC testing should be used as a familiarization session to allow for subject learning. No significant difference in Pmax was seen from test 3 to test 6. However, an increase of 1.3% was observed from test 4 to test 6. Therefore, although 4 tests may be sufficient for most subjects to produce Pmax, in some cases 6 tests may be required. PRACTICAL APPLICATIONS: No differences were seen in Pmax between upright and supine positions despite differing RPMpk. This suggests that ILC testing can be used to provide reliable testing both in an upright position (appropriate for athletes) and in research (e.g., bed rest) or rehabilitation settings where supine testing is necessary. Future research should evaluate whether peak power measurements obtained with the ILC are sensitive to changes such as that observed with training and de-training

    Temporal Changes in Left Ventricular Mechanics: Impact of Bed Rest and Exercise

    Get PDF
    The use of more sensitive and specific echocardiographic techniques such as speckle tracking imaging may address the current limitations of conventional cardiac imaging techniques to provide insight into the extent and time course of cardiac deconditioning following spaceflight or headdown tilt bed rest (HDTBR). METHODS Speckle tracking assessment of longitudinal, radial, and circumferential strain and twist was used to evaluate the impact of 70 days of HDTBR (n=7) and HDTBR + exercise (n=11) on temporal changes in LV mechanics. Echocardiograms were performed pre (BR2), during (BR31, 70), and following (BR+4hr) HDTBR. Repeated measures ANOVA was used to evaluate the effect of HDTBR on cardiac variables in control and exercise subjects. RESULTS After sedentary HDTBR, longitudinal (19.0 +/- 1.8% vs. 14.9 +/- 2.4%) and radial (15.0 +/- 1.9% vs. 11.3 +/- 2.2%) strain and twist (18.0 +/- 4.0deg vs. 17.0 +/- 3.6deg) were significantly impaired. In contrast, exercise preserved LV mechanics, and there were nonsignificant improvements from BR2 to BR70 in longitudinal strain (18.7 +/- 1.5% vs. 20.4 +/- 2.7%), radial strain (13.2 +/- 2.4% vs. 14.2 +/- 1.6%), and twist (16.3 +/- 3.6deg vs. 18.6 +/- 5.9deg). CONCLUSIONS Using speckle tracking echocardiography provides important new insights into temporal changes in LV mechanics during disuse and exercise training

    Nutrition Coupled with High-Load Traditional or Low-Load Blood Flow Restricted Exercise During Human Limb Suspension

    Get PDF
    High-load resistance exercise (HRE) and low-load blood flow restricted (BFR) exercise have demonstrated efficacy for attenuating unloading related muscle atrophy and dysfunction. In recreational exercisers, protein consumption immediately before and/or after exercise has been shown to increase the skeletal muscle anabolic response to resistance training. PURPOSE: To compare the skeletal muscle adaptations when chocolate milk intake was coupled with HRE or low-load BFR exercise [3 d/wk] during simulated lower limb weightlessness. METHODS: Eleven subjects were counterbalanced [based on age and gender] to HRE (31 +/- 14 yr, 170 +/- 13 cm, 71 +/- 18 kg, 2M/3W) or low-load BFR exercise (31 +/- 12 yr, 169 +/- 13 cm, 66 +/- 14 kg, 2M/4W) during 30 days of unilateral lower limb suspension (ULLS). Both HRE and BFR completed 3 sets of single leg press and calf raise exercise during ULLS. BFR exercise intensity was 20% of repetition maximum (1RM) with a cuff inflation pressure of 1.3 systolic blood pressure (143 4 mmHg). Cuff pressure was maintained during all 3 sets including rest intervals (90s). HRE intensity was 75% 1RM and was performed without cuff inflation. Immediately (<10 min) before and after exercise 8 fl oz of chocolate milk (150 kcal, 2.5g total fat, 22g total carbohydrate, 8g protein) was consumed to optimize acute exercise responses in favor of muscle anabolism. ULLS analog compliance was assessed from leg skin temperature recordings and plantar accelerometry. Muscle cross-sectional area (CSA) for knee extensor and plantar flexor muscle groups were determined from analysis of magnetic resonance images using ImageJ software. 1RM strength for leg press and calf raise was assessed on the Agaton exercise system. Muscular endurance during leg press and calf raise was evaluated from the maximal number of repetitions performed to volitional fatigue using 40% of pre-ULLS 1RM. RESULTS: Steps detected by plantar acceleometry declined by 98.9% during ULLS relative to an ambulatory control period. Average skin temperature of the unloaded calf declined from 27.4 C to 26.8 C (-2.1%), while there was a slight increase (+1.1%) in skin temperature in the loaded calf (27.6 C to 27.9 C). Collectively, these measures indicate strong subject compliance with the ULLS analog. Unloaded limb work performed during leg press (1514 +/- 334 vs. 576 +/- 103) and calf raise (2886 +/- 508 vs. 1233 +/- 153) exercises sessions was greater in HRE vs. BFR, respectively. Leg press training loads were 44 +/- 7 kg in HRE compared to 11 +/- 1 kg in BFR. Similarly, calf raise training loads were 81 +/- 11 kg in HRE and 16 +/- 1 kg in BFR. Pre to post-ULLS training adaptations in the unloaded leg are shown in the table. CONCLUSION: The preliminary results of this investigation suggest when HRE is optimized for muscle anabolism during unloading muscle size and strength are preserved (or enhanced) at the expense of muscle endurance. In contrast, when BFR exercise is optimized for muscle anabolism during unloading muscle endurance is preserved (or enhanced) at the expense of muscle size and strengt

    Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    Get PDF
    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of that observed in LL, which supports the hypothesis that local ischemia stimulates the LBFR hypertrophic response. As the cuff did not compress the artery, the ischemia may have occurred because of the blunted rise in CO or because arterial BP cannot overcome the cuff pressure. As LBFR(sub DBP) effectively reduced BF and CO with cuff pressures less than systolic BP, future studies should investigate the hypertrophic potential of LBFR at even lower cuff pressures

    Sweat Rates During Continuous and Interval Aerobic Exercise: Implications for NASA Multipurpose Crew Vehicle (MPCV) Missions

    Get PDF
    Aerobic deconditioning is one of the effects spaceflight. Impaired crewmember performance due to loss of aerobic conditioning is one of the risks identified for mitigation by the NASA Human Research Program. Missions longer than 8 days will involve exercise countermeasures including those aimed at preventing the loss of aerobic capacity. The NASA Multipurpose Crew Vehicle (MPCV) will be NASA's centerpiece architecture for human space exploration beyond low Earth orbit. Aerobic exercise within the small habitable volume of the MPCV is expected to challenge the ability of the environmental control systems, especially in terms of moisture control. Exercising humans contribute moisture to the environment by increased respiratory rate (exhaling air at 100% humidity) and sweat. Current acceptable values are based on theoretical models that rely on an "average" crew member working continuously at 75% of their aerobic capacity (Human Systems Integration Requirements Document). Evidence suggests that high intensity interval exercise for much shorter durations are equally effective or better in building and maintaining aerobic capacity. This investigation will examine sweat and respiratory rates for operationally relevant continuous and interval aerobic exercise protocols using a variety of different individuals. The results will directly inform what types of aerobic exercise countermeasures will be feasible to prescribe for crewmembers aboard the MPCV

    A Better ARED Squat

    Get PDF
    The 0-G ARED squat under loads the legs relative to the 1g ARED squat. In 1g the knee extensor/flexor muscles are primarily engaged due to the body's center of gravity is behind the knees during the motion of the squat. As body weight does not play a sufficient role 0 G, a crewmember's load exposure is limited by the load delivered by ARED through the exercise bar. Prescription loads for lowerbody resistance exercise in microgravity aim to include 1-G exercise bar load in addition to the crewmember's Earth body weight (BW); however, pressure points from the bar and the 1BW increased load at the shoulders translating to higher loads on the back have been a historical limitation for shoulders, requiring a decrease in exercise load at the start of the mission. Analogous to crewmembers, bed rest subjects report limitations of exercising with high loads on the back while performing squats on the horizontal exercise fixture (HEF), a custom exercise device that serves as an analog to 0-G ARED. Improvements for increasing loads on the HEF squat were suggested by distributing total exercise load between the hips and the bar1. The same is recommended for the 0-G ARED squat, with using current equipment on the ISS, which include the T2 running harness and T2 bungees. Quantification of this improvement has been accessed through computational modeling. The purpose of this study is to characterize joint torque during a squat with a distribution in exercise load on the ARED in 0 G. The analysis used existing models from NASA's Digital Astronaut Project. The biomechanics squat model was integrated with the ARED model and T2 bungees. The spring constant for the bungees were derived from ground testing. Forward dynamic simulation was performed for various conditions including anchor point attachments on the footplate of the ARED, bar load, hip load, and gravitational environment. The model confirms joint torques at knees is lower relative to 1G conditions primarily because the load delivery system is just with the exercise bar in 0 G. By distributing partial loads through use of the bungees to the hips joint-torque profiles were altered during a squat and provided options to enhance targeting lower-body loading in aims as for an improved countermeasure

    ISS Squat and Deadlift Kinematics on the Advanced Resistive Exercise Device

    Get PDF
    Visual assessment of exercise form on the Advanced Resistive Exercise Device (ARED) on orbit is difficult due to the motion of the entire device on its Vibration Isolation System (VIS). The VIS allows for two degrees of device translational motion, and one degree of rotational motion. In order to minimize the forces that the VIS must damp in these planes of motion, the floor of the ARED moves as well during exercise to reduce changes in the center of mass of the system. To help trainers and other exercise personnel better assess squat and deadlift form a tool was developed that removes the VIS motion and creates a stick figure video of the exerciser. Another goal of the study was to determine whether any useful kinematic information could be obtained from just a single camera. Finally, the use of these data may aid in the interpretation of QCT hip structure data in response to ARED exercises performed in-flight. After obtaining informed consent, four International Space Station (ISS) crewmembers participated in this investigation. Exercise was videotaped using a single camera positioned to view the side of the crewmember during exercise on the ARED. One crewmember wore reflective tape on the toe, heel, ankle, knee, hip, and shoulder joints. This technique was not available for the other three crewmembers, so joint locations were assessed and digitized frame-by-frame by lab personnel. A custom Matlab program was used to assign two-dimensional coordinates to the joint locations throughout exercise. A second custom Matlab program was used to scale the data, calculate joint angles, estimate the foot center of pressure (COP), approximate normal and shear loads, and to create the VIS motion-corrected stick figure videos. Kinematics for the squat and deadlift vary considerably for the four crewmembers in this investigation. Some have very shallow knee and hip angles, and others have quite large ranges of motion at these joints. Joint angle analysis showed that crewmembers do not return to a normal upright stance during squat, but remain somewhat bent at the hips. COP excursions were quite large during these exercises covering the entire length of the base of support in most cases. Anterior-posterior shear was very pronounced at the bottom of the squat and deadlift correlating with a COP shift to the toes at this part of the exercise. The stick figure videos showing a feet fixed reference frame have made it visually much easier for exercise personnel and trainers to assess exercise kinematics. Not returning to fully upright, hips extended position during squat exercises could have implications for the amount of load that is transmitted axially along the skeleton. The estimated shear loads observed in these crewmembers, along with a concomitant reduction in normal force, may also affect bone loading. The increased shear is likely due to the surprisingly large deviations in COP. Since the footplate on ARED moves along an arced path, much of the squat and deadlift movement is occurring on a tilted foot surface. This leads to COP movements away from the heel. The combination of observed kinematics and estimated kinetics make squat and deadlift exercises on the ARED distinctly different from their ground-based counterparts. CONCLUSION This investigation showed that some useful exercise information can be obtained at low cost, using a single video camera that is readily available on ISS. Squat and deadlift kinematics on the ISS ARED differ from ground-based ARED exercise. The amount of COP shift during these exercises sometimes approaches the limit of stability leading to modifications in the kinematics. The COP movement and altered kinematics likely reduce the bone loading experienced during these exercises. Further, the stick figure videos may prove to be a useful tool in assisting trainers to identify exercise form and make suggestions for improvement

    Calf Strength Loss During Mechanical Unloading: Does It Matter?

    Get PDF
    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions
    • …
    corecore